
ON THE STABILITY OF SOME HIERARCHICAL RANK
STRUCTURED MATRIX ALGORITHMS

YUANZHE XI∗ AND JIANLIN XIA†

Abstract. In this paper, we investigate the numerical error propagation and provide system-
atic backward stability analysis for some hierarchical rank structured matrix algorithms. We prove
the backward stability of various important hierarchically semiseparable (HSS) methods, such as
HSS matrix-vector multiplications, HSS ULV linear system solutions, HSS linear least squares so-
lutions, HSS inversions, and some variations. Concrete backward error bounds are given, including
a structured backward error for the solution in terms of the structured factors. The error propa-
gation factors only involve low-degree powers of the maximum off-diagonal numerical rank and the
logarithm of the matrix size. Thus, as compared with the corresponding standard dense matrix
algorithms, the HSS algorithms are not only faster, but also have much better stability. We also
show that factorization-based HSS solutions are usually preferred, while inversion-based ones may
suffer from numerical instability. The analysis builds a comprehensive framework for understanding
the backward stability of hierarchical rank structured methods. The error propagation patterns also
provide insights into the improvement of other types of structured solvers and the design of new
stable hierarchical structured algorithms. Some numerical examples are included to support the
studies.

Key words. hierarchical rank structure, backward stability, structured backward stability, error
propagation, HSS algorithms, ULV factorization

AMS subject classifications. 65F05, 65F30

1. Introduction. In the past decade, tremendous progress has been made on
the development of rank structured matrix techniques. Many innovative structured
algorithms have been proposed to solve linear systems and eigenvalue problems effi-
ciently [3, 11, 21, 25, 26, 27, 29, 32]. In general, these algorithms have much lower
complexity than classical matrix algorithms. One major class among these rank struc-
tures is the hierarchical rank structured matrix, such as H-matrices [4, 15, 16, 18],
H2-matrices [5, 17], and hierarchically semiseparable (HSS) matrices [6, 30]. In these
matrix representations, a given matrix is hierarchically partitioned into appropriate
blocks at multiple levels, and certain off-diagonal blocks are approximated by low-rank
forms. In particular, HSS matrices have been used to develop efficient algorithms for
both dense and sparse matrix problems [25, 29, 32, 33].

While the algorithms of rank structured matrices have been extensively studied,
relatively little work has been done on their numerical stability. This is partially due
to the complex nature of the algorithms, which usually involve a sequence of local
operations. For instance, stability properties for quasiseparable matrices have not
been analyzed until recently [2, 9]. In [9], two fast QR-based quasiseparable matrix
algorithms are compared and the conclusion that one is stable and the other is not
is made. In [2], another quasiseparable matrix method based on a nested product
decomposition is proven to be backward stable. However, the analysis in [2, 9] does
not provide actual error bounds in terms of the matrix size or the rank structure, and
thus fails to disclose how the errors propagate in these algorithms. For hierarchical
structured matrices, the stability analysis is even harder because the off-diagonal

∗Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN,
55455, USA (yxi@cs.umn.edu)
†Department of Mathematics, Purdue University, West Lafayette, IN 47907, USA (xiaj@math.

purdue.edu). The research of Jianlin Xia was supported in part by an NSF CAREER Award DMS-
1255416 and an NSF grant DMS-1115572.

1

2

blocks at different hierarchical levels are represented by nested products of many local
dense matrices. The first backward stability result for hierarchical structured matrices
appears in [25], where only the factorization process of HSS matrices is investigated.
It still leaves many other algorithms not studied, such as the multiplication of the
structured matrix with vectors, the solution of the structured linear systems, and the
least squares solution.

1.1. Contributions. In this paper we present systematic stability analysis for
various important HSS matrix algorithms, such as HSS matrix-vector multiplications,
HSS factorization-based linear system solutions, HSS linear least squares solutions,
HSS inversions, and some variations. Following [25], we express an HSS matrix A in
a telescoping representation [23] and describe the HSS algorithms in an explicit way
so as to ease the estimation of the rounding errors across different hierarchical levels.
We first review the approximation error bound for the HSS construction and then
assume the HSS form A is available and focus on the backward stability of various
other HSS methods.

We start with the HSS matrix-vector multiplication since it serves as a basic
component in several other HSS algorithms and is also often used in iterative solvers.
We show that the error bound is O(urp log2 n), where p is a small constant and r
is the HSS rank (See Definition 2.1). We continue to study HSS ULV-type solution
algorithms [6, 25, 32] that are often used in structured dense and sparse matrix com-
putations. The analysis of their variations, which take advantages of additional matrix
properties (e.g., symmetric positive definiteness), is also provided. In order to exploit
the structures in the factorization, we perform structured backward stability analysis
in terms of the ULV factors. This kind of analysis helps to distinguish between differ-
ent error propagation patterns resulting from different parts of the factors. We then
generalize this to an HSS URV linear least squares solution method proposed in [25].

Besides HSS ULV/URV factorization-based algorithms, there are also some HSS
inversion-based solution schemes [10, 11]. These schemes compute the HSS represen-
tation of A−1 and solve linear systems by HSS matrix-vector multiplications. They are
often used in the fast solutions of certain types of integral equations and can take into
consideration the physical properties of the underling problems. However, we show
that the inversion algorithm in [11] is potentially unstable. Thus, factorization-based
HSS solutions are preferred in practice.

Although the derivation of the stability results is tedious, it is convenient to
understand them via the hierarchical tree structure. We can observe that all the
error bounds are u magnified by factors that involve low-degree powers of r and
log n. That is, the hierarchical rank structure has significant benefits in not only
the efficiency (as known before), but also the stability. For problems with small off-
diagonal (numerical) ranks, the numerical errors in the hierarchical algorithms only
propagate levelwise along the hierarchical tree structures by O(logp n) for a small p.
Thus, we can conclude that HSS methods in general are both faster and more stable
than the corresponding standard dense matrix methods.

The analysis presented in this paper builds a comprehensive framework for the
numerical stability of HSS methods. Meanwhile, the analysis can also greatly benefit
the study of the numerical stability of other hierarchical rank structured algorithms,
including both dense and sparse ones, since the hierarchical error propagations are
similar. Our results also give new insights into the improvement of existing structured
solvers (such as those based on sequentially semiseparable or quasiseparable structures
[7, 8, 24]), as well as the design of new reliable structured algorithms.

STABILITY OF HIERARCHICAL RANK STRUCTURED METHODS 3

1.2. Outline and notation. The structure of the paper is organized as follows.
In Section 2, we briefly discuss some preliminaries and the numerical issues related
to HSS approximations. Section 3 presents the stability results of HSS matrix-vector
multiplications. Section 4 studies the structured stability of HSS ULV-type algorithms
for linear system solutions. The stability of an HSS URV algorithm for linear least
squares solutions is analyzed in Section 5. An HSS inversion algorithm is investigated
in Section 6. We provide some numerical examples in Section 7 and draw some
concluding remarks in Section 8.

The following notation is used throughout the paper:
• fl(·) denotes the computed result in a floating point operation;
• the relative perturbations to basic arithmetic operations are all represented

by O(u);
• A|I×J represents a submatrix of A with a row index set I and a column index

set J;
• diag(· · ·) represents a block diagonal matrix;
• T represents a full binary tree with nodes i = 1, 2, . . . , root(T), where root(T)

is the root of T ;
• sib(i) and par(i) are the sibling and the parent of a node i in T , respectively;
• the inequality in the following form between two matrices A and B of the

same shape is interpreted to hold componentwise:

|A| ≤ |B|;

• u is the unit roundoff or machine epsilon in IEEE double precision arithmetic;
• let γr = ru

1−ru for an integer r and γ̃r = cru
1−cru for a small constant c, as

frequently used in backward error analysis.

2. Preliminaries on HSS structures. We first give some preliminaries on HSS
structures, and then discuss the construction accuracy in HSS construction. An HSS
matrix is defined in a recursive way as in [6, 30, 32]. Here, we follow a slightly more
general form for rectangular HSS matrices [25] as below.

Definition 2.1. An m×n matrix A is an HSS matrix if it satisfies the following
conditions.

• There is a postordered full binary tree T associated with A, and root(T) is at
level 0 and its leaves are at level L.

• There are a row index set Ii and a column index set Ji associated with each
node i of T and defined recursively as

Ii = Ic1 ∪ Ic2 , Ic1 ∩ Ic2 = ∅, Ji = Jc1 ∪ Jc2 , Jc1 ∩ Jc2 = ∅,

where i is the parent of c1 and c2, and Iroot(T) ≡ {1, 2, . . . ,m}, Jroot(T) ≡
{1, 2, . . . , n}.
• There are matrices or generators Di, Ui, Vi, etc. associated with each node i

of T and defined recursively as

Di ≡ A|Ii×Ji
=

(
Dc1 Uc1Bc1V

T
c2

Uc2Bc2V
T
c1 Dc2

)
,(2.1)

Ui =

(
Uc1Rc1
Uc2Rc2

)
, Vi =

(
Vc1Wc1

Vc2Wc2

)
.(2.2)

See Figure 2.1 for an example. When A is a square matrix, we can set Ii ≡ Ji.

4

Let

(2.3) A−i = A|Ii×(Jroot(T)\Ji), A
|
i = A|(Iroot(T)\Ii)×Ji

,

which are called the HSS block rows and columns associated with node i, respectively.
The maximum numerical rank r of all the HSS block rows and columns is the HSS
rank of A. We assume r is small or bounded.

D1

D2

D4

D5

U3

U1

B3 V6

T

U6

B6 V3

T

B1V2

T

U2

B2V1

T

U4

B4V5

T

U5

B5V4

T
1

D1
D2

2

3

7

level

0

1

2

D3 D6

D7=A

4

D4
D5

5

6

U1 V1
U2 V2 U4 V4

U5 V5

R1 R2 R4 R5
W1 W2 W4 W5

B1

B2

B4

B5

B3

B6

level

level

Fig. 2.1. A 3-level HSS matrix and its corresponding HSS tree.

To facilitate the stability analysis, we expand the recursive expression in (2.1)
and write an HSS matrix A explicitly in the following telescoping form [23]:

A = U (L)(U (L−1)(· · · (U (1)B(1)(V (1))T +B(2)) · · ·) +B(L−1))(V (L−1))T(2.4)

+B(L))(V (L))T +D(L),

where D(l), U (l), V (l) and B(l) are block diagonal matrices defined in terms of the
HSS generators as follows [25]:

(2.5)

D(L) = diag(Di, i: all leaves),

U (l) =

 diag(Ui, i: all leaves), if l = L,

diag

((
Rc1
Rc2

)
, c1, c2: children of all i at level l

)
, otherwise,

V (l) =

 diag(Vi, i: all leaves), if l = L,

diag

((
Wc1

Wc2

)
, c1, c2: children of all i at level l

)
, otherwise,

B(l) = diag

((
0 Bi

Bsib(i) 0

)
, i: left nodes at level l

)
.

See Figure 2.2 for an illustration. Also for simplicity, if a level l of the HSS tree has
k(l) nodes, we denote them by

(2.6) l1, l2, . . . , lk(l).

Remark 2.1. Without loss of generality, we assume m ≥ n, each diagonal block
in both U (l) and V (l) has column size r, and each diagonal block in D(L) has column
size 2r throughout the paper. This also means that the matrix A has HSS rank r.

STABILITY OF HIERARCHICAL RANK STRUCTURED METHODS 5

V1
T

V2
T

V4
T

V5
T

D1

D2

D4

D5

U1

U2

U4

U5

R1

R2

R4

R5

B1

B2

B4

B5

W1W2 W4W5
T T T T

B3

B6

U
(2)

U
(1)

B
(1)

 V
(1)

B
(2)

D
(2)

T
(2)

T
 V ())() (+ +

Fig. 2.2. A telescoping representation [23] as in (2.4) for the HSS matrix in Figure 2.1.

For a matrix whose off-diagonal blocks have small numerical ranks, it is beneficial
to first compress those off-diagonal blocks and approximate this matrix by an HSS
matrix representation so as to speed up further matrix operations. The following
theorem measures the HSS approximation error in the Frobenius norm.

Theorem 2.2. (Corollary 4.3 [25]) Let A be an HSS approximation to C ∈
Rm×n from the standard HSS construction algorithm [30]. Under the assumption in
Remark 2.1, the relative tolerance τ used in the truncation of the singular values σi of
intermediate off-diagonal blocks satisfies σr+1 < τσ1 for a fixed r. Suppose the HSS
tree has L = O(log(min{m,n})) levels and the operations in the HSS construction
procedure are performed in exact arithmetic, we then have

(2.7) C = A+ E,

where

||E||F≤ 2τL
√

2r||C||F= O(τ
√
r log(min{m,n}))||C||F .

Theorem 2.2 shows how the HSS approximation error can be controlled. It only
depends on n polylogarithmically so that we can expect the accuracy to be well under
control even for very large sizes. The tolerance τ corresponds to the trade-off between
the approximation accuracy and the computational cost. It is known that the HSS
approximation algorithm has complexity O(rmn) [28], where the maximal off-diagonal
numerical rank r generally increases as τ decreases. We want to emphasize that in
some applications like eigenvalue computations [26] or preconditioning [31], a larger
τ is sufficient to yield satisfactory results.

In the following sections, we assume that we have constructed an HSS matrix A
and will focus on the numerical stability of various HSS matrix methods.

Remark 2.2. The HSS generators U, V obtained from standard HSS con-
struction algorithms [30] have orthonormal columns, which serves as a key feature to
ensure the numerical stability of many HSS matrix algorithms. This will be further
illustrated by the stability proofs in the remaining sections. On the other hand, ran-
domized HSS construction algorithms [23, 25, 32] usually require less operations to
construct an HSS matrix but may produce HSS generators U, V with non-orthonormal
columns. However, the norms of these generators are bounded. Therefore, their nu-
merical stability is similar to the orthogonal case except that the prefactors in their
corresponding error bounds are larger. In this paper, we focus on the case where U, V
have orthonormal columns.

6

In remaining sections, the stability analysis of various HSS algorithms is con-
ducted for a computed HSS matrix rather than an exact one. Moreover, in order to
distinguish between exact and computed quantities, wide-hatted notation is used to
represent the corresponding computed results in floating point operations.

3. HSS matrix-vector multiplication. We first analyze the HSS matrix-
vector multiplication algorithm in [6]. This algorithm can be considered as an al-
gebraic form of the fast multipole method (FMM) [13] for 1D problems [21]. From
(2.4), it is straightforward to derive this algorithm. For convenience, we describe the
operations levelwise and introduce notation in Algorithm 1 for the multiplication of
an HSS matrix A and a vector x. To facilitate the analysis, superscripts are used
to distinguish intermediate vectors in the levelwise traversal. In practice, the storage
should be reused.

Algorithm 1 HSS matrix-vector multiplication for d = Ax (revised from [6])

1: procedure hssmv
2: x(L+1) ← x
3: for level l = L,L− 1, . . . , 1 do

4: x(l) ← (V (l))
T
x(l+1)

5: t(l) ← B(l)x(l)

6: end for
7: d(0) ← t(1)

8: for level l = 1, 2, . . . , L− 1 do
9: d(l) ← U (l)d(l−1) + t(l+1)

10: end for
11: d← U (L)d(L−1) +D(L)x
12: end procedure

We can see that Algorithm 1 consists of frequent use of matrix-vector multipli-
cations associated with HSS generators. Thus, we first review the rounding error for
the standard matrix-vector multiplication in the following lemma.

Lemma 3.1. [20] The numerical matrix-vector product for N ∈ Rp×r and y ∈ Rr
satisfies

fl(Ny) = (N + ∆N)y, |∆N | ≤ γr|N |, ||∆N ||F ≤ γr||N ||F .

For N with numerically orthonormal rows or columns, the following extension is
obvious.

Lemma 3.2. If the matrix N in Lemma 3.1 has numerically orthonormal rows
or columns, the Frobenius norm bound then has a specific form

||∆N ||F ≤
√
rγr + o(u).

Proof. Since the orthogonality of N only holds numerically, we have

||N ||F≤
√
r +O(u).

Therefore, the following estimation holds for ∆N

||∆N ||F ≤ γr||N ||F≤ γr(
√
r +O(u)) =

√
rγr + o(u).

STABILITY OF HIERARCHICAL RANK STRUCTURED METHODS 7

The next lemma shows the relation between the norm of B̂(l) in (2.5) and ||Â||2.

Lemma 3.3. Suppose the HSS tree associated with the computed HSS matrix Â
has L levels and B̂(l) is defined as in (2.5). Then for 1 ≤ l ≤ L,

||B̂(l)||2≤ [1 +O(u)]||Â||2.

Proof. Following (2.5), we have

||B̂(l)||2= max
i

∥∥∥∥∥
(

0 B̂i
B̂sib(i) 0

)∥∥∥∥∥
2

= max
i
{||B̂i||2, ||B̂sib(i)||2}.

Based on the interlacing property and the fact that ÛiB̂iV̂
T
sib(i) forms the submatrix

Â|Ii×Jsib(i)
of Â, we have

||ÛiB̂iV̂ Tsib(i)||2≤ ||Â||2.

Since Ûi and V̂sib(i) have numerically orthonormal columns, we further have

||B̂i||2≤ [1 +O(u)]||ÛiB̂iV̂ Tsib(i)||2≤ [1 +O(u)]||Â||2.

Similarly, ||B̂sib(i)||2≤ [1 +O(u)]||Â||2. The result then follows.
We then proceed to show that the HSS matrix-vector multiplication algorithm is

backward stable by recursively applying Lemmas 3.1–3.3.
Theorem 3.4. The HSS matrix-vector multiplication Algorithm 1 is backward

stable. That is, it produces a numerical result

fl(Âx) = (Â+ ∆A)x+ o(u),

where

||∆A||2= O((
√
rlog2n)γr)||Â||2.

Proof. Algorithm 1 involves one bottom-up and one top-down traversal of the
HSS tree. In the bottom-up traversal (steps 3–6 of Algorithm 1), we multiply (V̂ (l))T

and B̂(l) with some vectors. Due to the block diagonal structure of V̂ (l), the following
matrix-vector multiplication holds in the floating point operation:

fl((V̂ (l))T v) = (V̂ (l) + ∆V (l))T v,

where ∆V (l) = diag
(
∆Vl1 , . . . ,∆Vlk(l)

)
with the notation in (2.6), and

||∆V (l)||2 = max
lj
||∆Vlj ||2≤ max

lj
||∆Vlj ||F≤

√
rγr + o(u).

The last inequality follows from Lemma 3.2 since V̂lj have numerically orthonormal
columns.

Thus, we obtain

fl(x(l)) = (V̂ (l) + ∆V (l))T fl(x(l+1)), ||∆V (l)||2≤
√
rγr + o(u),

8

for l = L,L− 1, . . . , 1. Similarly, we have

fl(t(l)) = (B̂(l) + ∆B(l)) fl(x(l)), |∆B(l)| ≤ γr|B̂(l)|,

where ∆B(l) = diag

((
0 ∆Blj

∆Blj+1
0

))
for l = L,L− 1, . . . , 1.

The estimation of ||∆B(l)||2 can also be simplified by its block diagonal structure:

||∆B(l)||2= max
lj
||∆Blj ||2≤ max

lj
||∆Blj ||F≤ γr max

lj
||B̂lj ||F

≤
√
rγr max

lj
||B̂lj ||2 =

√
rγr||B̂(l)||2 ≤

√
rγr||Â||2 + o(u).

The last inequality holds due to Lemma 3.3.
Therefore, we know that for a fixed l,

fl(x(l)) =

L∏
j=l

(V̂ (j) + ∆V (j))Tx =
(L∏
j=l

(V̂ (j))
T

+ ∆V̂l

)
x+ o(u),(3.1)

fl(t(l)) =
(
B̂(l)

L∏
j=l

(V̂ (j))T + ∆B̂l

)
x+ o(u),(3.2)

where

∆V̂l =

L∑
j=l

(V̂ (l))
T
· · · (V̂ (j−1))

T
(∆V (j))T (V̂ (j+1))T · · · (V̂ (L))T ,

∆B̂l = B̂(l)∆V̂l + ∆B(l)
L∏
j=l

(V̂ (j))T .

We also have the following bounds:

||∆V̂l||2≤ (L− l + 1)
√
rγr + o(u), ||∆B̂l||2≤ [(L− l + 2)

√
rγr + o(u)]||Â||2.

In the top-down traversal of the HSS tree (steps 8–10 in Algorithm 1), we know
that for l = 1, 2, . . . , L− 1,

fl(d(l)) = (I + uZl)[(Û
(l) + ∆U (l)) fl(d(l−1)) + fl(t(l+1))],

where |∆U (l)|≤ γr|Û (l)| and |Zl|≤ I.
Replacing fl(t(l+1)) on the right-hand side of the above equation with (3.2) yields

fl(d(l)) = (Û (l) + ∆U (l)) fl(d(l−1)) + uZl · Û (l) · fl(d(l−1)) + uZl fl(t(l+1))

+ fl(t(l+1)) + o(u)

=
(
B̂(l+1) ·

L∏
j=l+1

(V̂ (j))T + ∆Bl+1 + uZl · B̂(l+1) ·
L∏

j=l+1

(V̂ (j))T
)
x

+ (Û (l) + ∆U (l) + uZl · Û (l)) fl(d(l−1)) + o(u).

Expand the above recursion to get

fl(d(l)) =

(
l∑
i=1

(i∏
k=l

Û (k) · B̂(i) ·
L∏
j=i

(V̂ (j))
T
)

+ B̂(l+1) ·
L∏

j=l+1

(V̂ (j))
T

+ F (l)

)
x+ o(u),

STABILITY OF HIERARCHICAL RANK STRUCTURED METHODS 9

where

F (l) = Û (l)F (l−1) + uZl · B̂(l+1) ·
L∏

i=l+1

(V̂ (i))
T

+ ∆B̂l+1

+ ∆U (l) ·
l−1∑
j=1

(j∏
k=l−1

Û (k) · B̂(j) ·
L∏
i=j

(V̂ (i))
T
)

+ ∆U (l) · B̂(l) ·
L∏
j=l

(V̂ (j))
T

+ uZl ·
l∑

j=1

(j∏
k=l

Û (k) · B̂(j) ·
L∏
i=j

(V̂ (i))T
)
,

2 ≤ l ≤ L− 1,

F (1) = Û (1) ·∆B̂1 + ∆U (1) · B̂(1) ·
L∏
i=1

(V̂ (i))
T

+ uZ1 · Û (1) · B̂(1) ·
L∏
i=1

(V̂ (i))T

+ uZ1 · B̂(2) ·
L∏
i=2

(V̂ (i))
T

+ ∆B̂2.

From Lemma 3.3, we also obtain the estimates

||F (l)||2 ≤ ||F (l−1)||2+
[
(L+ 1)

√
rγr + u (l + 1)

]
||Â||2

≤ [(l − 1) (L+ 1)
√
rγr +

u

2
(l − 1)(l + 4) + 2 (L+ 1)

√
rγr +O(u)]||Â||2,

2 ≤ l ≤ L− 1,

||F (1)||2 ≤
[
2 (L+ 1)

√
rγr +O(u)

]
||Â||2.

In step 11, we get

fl(d) = (I + uZL) [(Û (L) + ∆U (L)) fl(d(L−1)) + fl(D̂(L)x)]

= (I + uZL) [(Û (L) + ∆U (L)) fl(d(L−1)) + (D̂(L) + ∆D(L))x],

where |∆U (L)|≤ γr|Û (L)|, |∆D(L)|≤ γ2r|D̂(L)| and |ZL|≤ I. Then

fl(Âx) = fl(d)

=(Û (L) + ∆U (L)) fl(d(L−1)) + (D̂(L) + ∆D(L))x

+ uZL · Û (L) · fl(d(L−1)) + uZL · D̂(L) · x+ o(u)

=

(
L∑
j=1

(j∏
k=L

Û (k) · B̂(j) ·
L∏
l=j

(V̂ (l))T
)

+ D̂(L) + ∆A

)
x+ o(u)

=(Â+ ∆A)x+ o(u),

where

∆A = ∆U (L) ·
L−1∑
j=1

(j∏
k=L−1

Û (k) · B̂(j) ·
L∏
l=j

(V̂ (l))
T

+ B̂(L) · (V̂ (L))
T
)

+ uZL

(L−1∑
j=1

(j∏
k=L−1

Û (k) · B̂(j) ·
L∏
l=j

(V̂ (l))
T
)

+ B̂(L) · (V̂ (L))T
)

+ uZL · D̂(L) + Û (L) · F (L−1) + ∆D(L),

10

and

||∆A||2= O(
√
rL2γr)||Â||2 = O((

√
rlog2n)γr)||Â||2.

This completes the proof.
Theorem 3.4 can be interpreted in an intuitive way as follows. The HSS matrix-

vector multiplication Algorithm 1 consists of a bottom-up sweep and a top-down
sweep of the HSS tree T . The operations at the leaf level L introduce a rounding
error bounded by O(

√
rγr)||Â||2. During the traversal of T from the leaf level to the

root and then back to the leaf level, this error propagates up and down along the tree
and is magnified by a factor of O(L). Therefore, the contribution to the total error

from the leaf level operations is bounded by O(
√
rLγr)||Â||2. The rounding errors

incurred at other levels follow similar amplification patterns. When we sum them up,
we obtain the error bound in Theorem 3.4.

It is interesting to compare the amplification factors in the error bounds in Lemma
3.1 for standard dense matrix-vector multiplications and Theorem 3.4 for HSS matrix-
vector multiplications. The factor in front of u in Lemma 3.1 shows that the error
propagation in the standard dense matrix-vector multiplication is proportional to
the matrix size n. On the other hand, the HSS matrix-vector multiplication only
amplifies u by O(r

√
r log2 n). This is proportional to log2 n for bounded r. Thus, the

HSS multiplication exhibits much better numerical stability. This is due to the fact
that the HSS method decouples the matrix into hierarchical low-rank forms following
a tree structure. Any HSS operation corresponds to an HSS tree traversal process, and
the error magnification is proportional to the length of the path traversed. Since the
longest path in an HSS tree is O(log n), HSS algorithms only involve polylogarithmic
error amplification.

4. HSS ULV-type algorithms for linear system solutions. We then study
the numerical stability of ULV-type algorithms for directly solving an HSS linear
system

(4.1) Ax = b,

where A is an n× n HSS matrix. (The rectangular least-squares case will be studied
in the next section.) Both the classical HSS ULV algorithm and its variations are
analyzed in this section.

4.1. General nonsymmetric case. In general, HSS ULV-type algorithms can
be separated into two disjoint stages: (1) HSS ULV factorizations and (2) HSS ULV
solutions. In the ULV factorization [6], a diagonal block associated with each leaf
is partially eliminated. The remaining blocks are merged into a reduced HSS form
[29], which is factorized recursively. The stability for this factorization has been
investigated in [25] for nonsymmetric HSS matrices. But the analysis of the ULV
solution is not conducted in [25]. For the sake of completeness, we first briefly review
the related results in [25] and then proceed to prove the numerical stability of the
solution stage.

The following notation similar to those in [25] is used in the analysis:
• A(l) represents the extended reduced matrix after partially factorizing A(l+1)

(with those eliminated blocks replaced by zeros), with A(L) ≡ A;
• Ψ(l) represents the permutation matrix needed at level l to form the reduced

matrix A(l);

STABILITY OF HIERARCHICAL RANK STRUCTURED METHODS 11

• G(l) represents the blocks eliminated at level l with appropriate zero blocks
and permutations (Ψ(l));

• wide-tilded notation represents unitary matrices computed from Householder
transformations.

See Figure 4.1 below for an illustration of the matrices and operations, and more
details are given below. Following the notation in (2.6), for l = L,L− 1, . . . , 1, define
n× n matrices

(4.2)
Q(l) = diag(Ql1 , Ql2 , . . . , Qlk(l)

, I)Ψ(l),

P(l) = diag(Pl1 , Pl2 , . . . , Plk(l)
, I)Ψ(l),

where Qlk is the orthogonal matrix computed from the QL factorization of the HSS
generator Ulk , Plk is an orthogonal matrix used for the partial elimination of Dlk ,
and the identity matrices in diag(· · ·) correspond to the reduced matrices. More
specifically, the ULV factorization can be represented by

A(L) ≡ A,
A(l−1) + G(l) = (Q(l))TA(l)P(l), l = L,L− 1, . . . , 1.

Expand the above recursion and obtain

A = Q(L)(Q(L−1)(· · · (Q(1)(G(0)(P(0))T + G(1))(P(1))T)(4.3)

+ · · ·+ G(L−1))(P(L−1))T + G(L))(P(L))T ,

where we further suppose an QL factorization is computed for the final reduced matrix:

(4.4) A(0) = G(0)(P(0))T .

Thus, we can also include l = 0 for P(l) in (4.2). The ULV factorization is illustrated
in Figure 4.1 for an HSS matrix with L = 2.

G(l) represents the contribution of level-l eliminations to the overall ULV factors.
Here, we organize the nonzero blocks within G(l) in a way different from those in
[6, 30]. We partition the blocks in G(l) into two distinct parts: a block diagonal
matrix with lower triangular matrices along its diagonal which we denote as T (l), and
the factors right below T (l) which can actually be organized into an HSS form and
are denoted as H(l). That is, we can write

(4.5) G(l) =

(
T (l)

H(l) 0

)
.

When l = 0, we suppose G(l) ≡ T0 as produced in (4.4). See Figure 4.1(vi) for such
a partition inside G(l). After permutations, the G(l) factors at all levels l can be as-
sembled together into a structured lower triangular factor L in the ULV factorization.
For example, for L = 2, we have

L =

 T (2)

H(2)

(
T (1)

H(1) T (0)

)  ,

where T (0) ≡ G(0). Following the assumptions made in Remark 2.1, T (l) and H(l) are
square matrices, and their row sizes are equal to n/2 when l = L and are reduced by

12

D1

D2

D4

D5

Q
1

 T

U3

P
1

P
2

Q
2

 T

P
4

P
5

Q
4

 T

Q
5

 T

U1

U4

(i) Apply Qi and Pi to A(2) (ii) Nonzero pattern of (Q(2))TA(2)P(2)

(iii) Nonzero pattern of (Q(2))TA(2)P(2) after permutations

H
(2)

T
(2)

(iv) Nonzero pattern of G(2) (v) Nonzero pattern of A(1)

Fig. 4.1. Illustration of the ULV factorization of an HSS form with L = 2.

half as l becomes l− 1. With more levels, the structure of L can be seen from Figure
4.2.

Since the elimination of T (l) and H(l) involves different operations, we analyze
their associated error propagation separately. Corollary 4.12 of [25] is adapted from
Theorem 4.11 regarding the backward stability of HSS URV factorizations in [25] to
study the backward stability of HSS ULV factorizations and is summarized as follows.

Proposition 4.1. [25, Corollary 4.12] The HSS ULV factorization in [6] yields

Â+ F = Q̃(L)(Q̃(L−1)(· · · (Q̃(1)(Ĝ(0)(P̃(0))T + Ĝ(1))(P̃(1))T)

+ · · ·+ Ĝ(L−1))(P̃(L−1))T + Ĝ(L))(P̃(L))T ,

STABILITY OF HIERARCHICAL RANK STRUCTURED METHODS 13

Fig. 4.2. Illustration of the L factor in the ULV factorization of an HSS form with L = 3.

where the backward error F satisfies

||F||F= O((r log n)γ̃r)||Â||F .

This stability result can be interpreted in a similar way as the HSS matrix-vector
multiplication algorithm. Rounding errors introduced at each level of the HSS tree are
bounded by O(rγ̃r)||Â||F . Because the computed factors Q̃(l) and P̃(l) are orthogonal
matrices, these rounding errors are not amplified during the HSS tree traversal. Thus,
the overall rounding error is bounded by the sum of the rounding errors at each level,
which is O(rLγ̃r)||Â||F .

In the ULV solution stage, a sequence of orthogonal transformations and struc-
tured substitutions are performed. In order to utilize the stack data structure to save
the storage, HSS ULV solution schemes in [6, 30, 32] follow a postordering traversal of
the HSS tree T . However, rounding errors associated with the nodes at the same level
of T have the same structure. This makes it easier to analyze the overall backward
error if we group the operations at each level together and rephrase the HSS ULV
solution scheme levelwise based on (4.3). See Algorithm 2.

Notice that besides the orthogonal transformations (matrix-vector multiplications
associated with Q(l) and P(l)), the major operations in Algorithm 2 are the lower tri-
angular solution step 6 and the right-hand side update step 7. This shows that the
HSS ULV solution scheme essentially amounts to performing a block forward substi-
tution levelwise/hierarchically with the structured form L (instead sequentially as in
the standard lower triangular solution). See Figure 4.2 for illustration. Therefore, we
first review the backward error analysis for the block forward substitution algorithm.
The following lemma is a direct extension of [20, Theorem 8.5] and Lemma 3.1.

Lemma 4.2. Suppose a nonsingular lower triangular matrix L ∈ Rn×n is parti-
tioned into the following block 2× 2 form:

(4.6) L =

(
L11

L21 L22

)
,

where the (1,1) block has size r × r. When the linear system Lx = t is solved by

14

Algorithm 2 HSS ULV solution scheme for solving Ax = b (revised from [6, 30])

1: procedure hssulvsol
2: b(L+1) ← b
3: for level l = L,L− 1, . . . , 1 do
4: b(l) ← (Q(l))T b(l+1)

5:

(
b
(l)
1

b
(l)
2

)
← b(l) . Conformable partition of b(l) following (4.5)

6: Solve T (l)y
(l)
1 = b

(l)
1

7: b(l−1) ← b
(l)
2 −H(l)y

(l)
1

8: end for
9: Solve T (0)y

(0)
1 = b(0)

10: xT ← ((y
(L)
1)T · · · (y

(0)
1)T)

11: for level l = 0, 1, . . . , L do
12: x← P(l)x
13: end for
14: end procedure

forward substitution, the computed solution x̂ = (x̂T1 , x̂
T
2)T satisfies(

L11 + ∆L11

L21 + ∆L21 L22 + ∆L22

)(
x̂1

x̂2

)
= t,

where

||∆L11||F ≤ γr||L11||F , ||∆L21||F ≤ γr||L21||F , and ||∆L22||F ≤ γn−r||L22||F .

The backward error ∆L11 results from triangular solutions and ∆L21 results from
a matrix-vector multiplication. By relating (4.6) to the L factor (Figure 4.2) from
the ULV factorization, we can treat the ULV solution process with L as a repeated
block 2× 2 lower triangular solution, except in a levelwise/hierarchical way. L11 and
L21 in (4.6) correspond to T (l) and H(l) in (4.5), respectively, and L22 corresponds to
the nonzero blocks in the extended reduced HSS matrix A(l−1). At each level l, only
part of the solution corresponding to T (l) is computed and the remaining part needs
to be computed at upper levels. We then derive the overall backward error for the
HSS ULV solution scheme as follows. We will repeatedly use the error bounds similar
to those for ||∆L11||F and ||∆L21||F in Lemma 4.2.

Theorem 4.3. Suppose the ULV factors of a computed nonsingular HSS matrix
Â ∈ Rn×n are given in (4.3). Then the ULV solution Algorithm 2 applied to the linear
system (4.1) produces a computed solution x̂ satisfying

(Q̃(L) + ∆Q̃(L))((Q̃(L−1) + ∆Q̃(L−1))(· · · (Q̃(1) + ∆Q̃(1))(4.7)

· ((Ĝ(0) + ∆G(0))((P̃(0))T + ∆P̃ (0))

+ Ĝ(1) + ∆G(1))((P̃(1))T + ∆P̃ (1)) + · · ·+ Ĝ(L−1) + ∆G(L−1))

· ((P̃(L−1))T + ∆P̃ (L−1)) + Ĝ(L) + ∆G(L))((P̃(L))T + ∆P̃ (L))x̂ = b,

STABILITY OF HIERARCHICAL RANK STRUCTURED METHODS 15

where

||∆Q̃(l)||2 ≤ rγ̃2r + o(u), ||∆P̃ (l)||2≤ rγ̃2r + o(u),(4.8)

∆G(l) =

(
∆T (l)

∆H(l) 0

)
with(4.9)

||∆T (l)||2 ≤
√
rγr||T̂ (l)||2, ||∆H(l)||2= O(l2

√
rγr)||Ĥ(l)||2.

Proof. We follow the solution process. At level L, we solve for y
(L)
1 at step 6 in

Algorithm 2, which is part of an overall solution process as follows:

(4.10) (G(L) +A(L−1))y(L) = (Q(L))T b,

where y(L) =

(
y

(L)
1

y
(L)
2

)
and the portions y

(L)
1 and y

(L)
2 correspond to the nonzero

blocks in G(L) and A(L−1), respectively. The portion y
(L)
1 is computed at the current

level L. The portion y
(L)
2 is to be computed at upper levels. Based on Lemma 4.2,

we know that the computed solution ŷ(L) at level L satisfies

(Ĝ(L) + ∆G(L) + Â(L−1) + ∆A(L−1))

(
ŷ

(L)
1

ŷ
(L)
2

)
= ((Q̃(L))T + ∆Q(L))b,

where ∆G(L) is defined in (4.9) with l set to be L. Here, ∆Q(l), ∆T (l) and ∆H(l)

for l = L represent the perturbation matrices associated with Q̃(l), T̂ (l) and Ĥ(l),
respectively, and

(4.11) ∆Q(l) = diag
(
∆Ql1 , . . . ,∆Qlk(l)

)
, ∆T (l) = diag

(
∆Tl1 , . . . ,∆Tlk(l)

)
,

where the notation in (2.6) is used. Â(L−1) is defined by the following recursive
formula with l set to L:

Â(l−1) + Ĝ(l) = (Q̃(l))T Â(l)P̃(l), and Â(L) ≡ Â,

and ∆A(L−1) denotes the rounding errors to be introduced by upper level operations

when we compute ŷ
(L)
2 . Note that we do not need to find the explicit form of ∆A(L−1)

but the perturbations associated with the factors at upper levels.
We then derive bounds for ||∆Q(L)||2, ||∆T (L)||2 and ||∆H(L)||2. Since each diag-

onal block Q̃Lj in Q̃(L) has size 2r×2r and is formed as the product of r Householder
matrices [25, 30], according to [20, Lemma 19.3], we have

(4.12) ||∆Q(L)||2= max
j
||∆QLj

||2≤ max
j
||∆QLj

||F≤ rγ̃2r.

The bound for ||∆T (L)||2 can be estimated based on its block diagonal structure (with

each diagonal block size r× r) and Lemma 4.2. Let T̂ (L) = diag(T̂L1 , . . . , T̂Lk
). Then

(4.13) ||∆T (L)||2≤ max
j
||∆TLj

||F≤ γr max
j
||T̂Lj

||F≤
√
rγr||T̂ (L)||2.

The estimation of ||∆H(L)||2 is a direct generalization of Theorem 3.4:

(4.14) ||∆H(L)||2= O(L2
√
rγr)||Â||2.

16

Next, we move one level up to level L − 1. A portion of ŷ
(L)
2 corresponding to

T̂ (L−1) can be computed. This is part of an overall solution process as follows:

Q(L−1)(G(L−1) +A(L−2))y(L−1) = (Q(L))T b−G(L)y(L),

where y(L−1) =

 0

y
(L−1)
1

y
(L−1)
2

 and the portion represented by y
(L−1)
2 is computed at

upper levels. Notice that the term G(L)y(L) is fully available since it is equal to(
T (L)

H(L)

)
y

(L)
1 . The operations at level L − 1 introduce the perturbations ∆Q(L−1)

and ∆G(L−1), and the computed solution ŷ
(L−1)
1 satisfies

(Ĝ(L−1) + ∆G(L−1) + Â(L−2) + ∆A(L−2))

 0

ŷ
(L−1)
1

ŷ
(L−1)
2


= ((Q̃(L−1))T + ∆Q(L−1))

[
((Q̃(L))T + ∆Q(L))b− (Ĝ(L) + ∆G(L))

(
ŷ

(L)
1

0

)]
,

where ∆G(L−1) and ∆Q(L−1) are defined as in (4.9) and (4.11) with l = L − 1,
respectively, and ∆A(L−2) denotes the rounding errors to be introduced by operations
from level L − 2 up to level 0. The bounds for the errors ∆G(L−1) and ∆Q(L−1) at
the current step are obtained similarly to those in (4.12)–(4.14).

This process is then repeated for the upper levels, and we obtain bounds for the

errors introduced at each level. When level 0 is reached, the computed solution ŷ
(0)
1

satisfies

(Ĝ(0) + ∆G(0))

(
0

ŷ
(0)
1

)
=

L∏
l=1

((Q̃(l))T + ∆Q(l))b

(4.15)

−
L∑
l=1

(l−1∏
j=1

((Q̃(j))T + ∆Q(j))
)

(Ĝ(l) + ∆G(l))

 0

ŷ
(l)
1

0

 ,
where, for convenience,

 0

ŷ
(l)
1

0

 with l = L should be understood as

(
ŷ

(L)
1

0

)
.

Notice Ĝ(0) = T (0). (4.15) is then solved simply by forward substitution in step 9 of
Algorithm 2, and Lemma 4.2 can be applied to obtain an error estimate similar to
(4.13) for ∆G(0).

Multiply
(∏L

l=1((Q̃(l))T + ∆Q(l))
)−1

to (4.15) on the left to obtain

(L∏
l=1

((Q̃(l))T + ∆Q(l))
)−1

(Ĝ(0) + ∆G(0))

(
0

ŷ
(0)
1

)
(4.16)

+

L∑
l=1

(L∏
j=l

((Q̃(j))T + ∆Q(j))
)−1

(Ĝ(l) + ∆G(l))

 0

ŷ
(l)
1

0

 = b.

STABILITY OF HIERARCHICAL RANK STRUCTURED METHODS 17

Let ẑ = ((ŷ
(L)
1)T · · · (ŷ

(0)
1)T)T . From steps 10 and 12 of Algorithm 2, the com-

puted solution x̂ to the original HSS system is obtained by

x̂ = fl
(0∏
l=L

P̃(l)ẑ
)

=

0∏
l=L

((P̃(l)) + ∆P (l))ẑ,

where the estimation of ||∆P (l)||2 is similar to that of ||∆Q(l)||2 in (4.12) since they
have the same structure. This immediately leads to

ẑ =

L∏
l=0

((P̃(l)) + ∆P (l))−1x̂ =

L∏
l=0

((P̃(l))T + ∆P̃ (l))x̂,

where ||∆P̃ (l)||2 satisfies the bound in (4.8). The estimation above is derived from
the Neumann series expansion:

(4.17) (P̃(l) + ∆P (l))−1 = (P̃(l))T −(P̃(l))T∆P (l)(P̃(l))T + · · ·︸ ︷︷ ︸
∆P̃ (l)

Due to the zero structures in Ĝ(l) and ∆G(l), we have

(Ĝ(l) + ∆G(l))

 0

ŷ
(l)
1

0

 = (Ĝ(l) + ∆G(l))

L∏
j=l

((P̃(j))T + ∆P̃ (j))x̂.

Thus, (4.16) can be rewritten in a nested form as below:

((Q̃
(L)

)T + ∆Q(L))−1((Q̃(L−1))T + ∆Q(L−1))−1(· · · ((Q̃(1))T + ∆Q(1))−1(4.18)

· ((Ĝ(0) + ∆G(0))((P̃(0))T + ∆P̃ (0))

+ Ĝ(1) + ∆G(1))((P̃(1))T + ∆P̃ (1)) + · · ·+ Ĝ(L−1) + ∆G(L−1))

· ((P̃(L−1))T + ∆P̃ (L−1)) + Ĝ(L) + ∆G(L))((P̃(L))T + ∆P̃ (L))x̂ = b.

Expanding ((Q̃(l))T + ∆Q(l))−1 into a Neumann series similarly to (4.17) yields

((Q̃(l))T + ∆Q(l))−1 = Q̃(l) + ∆Q̃(l),

where ||∆Q̃(l)||2 satisfies the bound in (4.8). Then, (4.18) can be further simplified

into (4.7), where ||∆Q̃(l)||2 and ||∆P̃ (l)||2 satisfy the bounds in (4.8). This completes
the proof.

Remark 4.1. Analogously to [1], Theorem 4.3 shows that the ULV solution
scheme in Algorithm 2 is structured numerically backward stable in the sense that the
computed x̂ is the exact solution to a nearby linear system with small perturbation to
each computed factor. This is different from standard backward stability results for
dense GEPP/QR methods [20]. This is more beneficial for structured matrix analysis
since it reveals the error propagation associated with different parts of the factors.

If we premultiply (4.15) with
∏L
l=1 Q̃

(l) in the proof of Theorem 4.3, we can obtain

the following corollary, where the perturbation ∆Q̃(l) in Theorem 4.3 is removed and
a new perturbation ∆b is added.

18

Corollary 4.4. With the same conditions and notation as in Theorem 4.3, the
computed solution x̂ is the exact solution to

(Q̃(L)(Q̃(L−1)(· · · (Q̃(1)((Ĝ(0) + ∆G(0))((P̃(0))T + ∆P̃ (0))

+ Ĝ(1) + ∆G(1))((P̃(1))T + ∆P̃ (1)) · · ·) + Ĝ(L−1) + ∆G(L−1))

((P̃(L−1))T + ∆P̃ (L−1)) + Ĝ(L) + ∆G(L))((P̃(L))T + ∆P̃ (L))x̂ = b+ ∆b,

where

||∆b||2≤ Lrγ̃2r||b||2,

and ||∆P̃ (l)||2, ||∆T (l)||2, ||∆H(l)||2 satisfy the same bounds as in Theorem 4.3.

4.2. Symmetric cases. When A is symmetric, ULV algorithms as in [30, 31]
can take advantage of the symmetry. In particular, if A is further symmetric and
positive definite (SPD), the generalized HSS Cholesky factorization in [30] replaces the
partial QR factorizations of the D generators by Cholesky factorizations. Following
the notation in (4.2), we define Q(l) as in (4.2) and

L(l) = diag(Sl1 , Sl2 , . . . , Slk(l)
, I)Ψ(l), l = L,L− 1, . . . , 1,

where Slj is the lower triangular matrix computed from the Cholesky factorization
of HSS generators Dlj . We are then able to express the generalized HSS Cholesky
factorization as

(4.19) A = L(L)Q(L) · · ·L(1)Q(1)L(0)(L(0))T (Q(1))T (L(1))T · · · (Q(L))T (L(L))T .

Notice that this form is slightly different from (4.3). The stability analysis is similar to
that for the HSS ULV factorization in [25]. We skip the details and only concentrate
on the stability of the solution stage.

After factorizing A into the form of (4.19), it becomes obvious that the lin-
ear system Ax = b can be solved by orthogonal matrix-vector multiplications and
back/forward substitutions. In the following theorem we show that the generalized
HSS Cholesky solution is structured backward stable.

Theorem 4.5. Suppose the generalized HSS Cholesky factors of a computed SPD
HSS matrix Â ∈ Rn×n are given in (4.19). Then HSS Cholesky solution algorithm
produces a computed solution x̂ satisfying

(L̂(L) + ∆S(L))(Q̃(L) + ∆Q(L)) · · · (L̂(0) + ∆S(0))(L̂(0) + ∆S(0))T

· · · (Q̃(L) + ∆Q(L))T (L̂(L) + ∆S(L))T x̂ = b,

where

||∆S(l)||2≤
√
rγr||L̂(l)||2, ||∆Q(l)||2≤ rγ̃2r + o(u).

Proof. The proof just relies on recursively applying estimates similar to (4.12)
and (4.13) in the proof of Theorem 4.3.

The HSS LDL factorization [26] for general symmetric HSS matrices can be ana-
lyzed similarly. The details are skipped here.

STABILITY OF HIERARCHICAL RANK STRUCTURED METHODS 19

5. HSS linear least squares solutions. For a rectangular HSS matrix A ∈
Rm×n (m > n), an efficient HSS URV least squares solution algorithm is proposed in
[25]. Similar to HSS ULV algorithms, the HSS URV factorization also consists of two
stages: an HSS URV factorization and an HSS URV solution. The backward stability
for the factorization stage has been addressed in [25]. In order to perform the stability
analysis for the solution stage, we follow the proof in Section 4 and write the HSS
URV factorization explicitly in the form of

A =Q(L)(Q(L−1)(· · · (Q(1)(Q(0)G(0) + G(1))(P(1))T) + · · ·+ G(L−1))(5.1)

(P(L−1))T + G(L))(P(L))T ,

where Q(l) ∈ Rm×m and P(l) ∈ Rn×n have forms similar to (4.2), and G(l) are defined
in the same way as at the beginning of Section 4 except that each diagonal block in
T (l) is an upper triangular matrix and the final reduced matrix A(0) is now factored
by QR factorization into the form of A(0) = Q(0)G(0).

The HSS URV solution scheme can be interpreted similarly to HSS ULV solu-
tions. A rectangular HSS matrix is transformed by two-sided orthogonal transforma-
tions (Q(l) and P(l)) into a structured block upper triangular matrix. This makes it
convenient to perform the least squares solution.

Remark 5.1. A size reduction strategy is proposed in [25] to improve the
performance of HSS URV algorithms when m� n. This strategy reduces the row size
m of rectangular HSS matrices to be as close to n as possible before URV factorization
by introducing zeros into the D and U generators. If this process is applied, (5.1)
should be modified by premultiplying A with a block diagonal matrix with orthogonal
diagonal blocks. This does not affect the stability analysis.

The stability analysis for the HSS ULV solution can be modified to obtain a
similar result for the HSS URV solution. The backward stability result is provided in
the next theorem.

Theorem 5.1. Suppose the HSS URV factors of a computed rectangular HSS
matrix Â ∈ Rm×n (m ≥ n) are given in (5.1). Then HSS URV least squares solution
algorithm produces a computed solution x̂ that is the exact solution to

min
x̂
||(b+ ∆b)− Q̃(L)(Q̃(L−1)(· · · (Q̃(1)(Q̃(0)(G̃(0) + ∆G(0)) + Ĝ(1) + ∆G(1))

((P̃(1))T + ∆P̃ (2)) + · · ·+ Ĝ(L−1) + ∆G(L−1))((P̃(L−1))T

+ ∆P̃ (L−1)) + Ĝ(L) + ∆Ĝ(L))((P̃(L))T + ∆P̃ (L))x̂||2,

where

||∆b||2 ≤ Lrγ̃2r||b||2, ||∆P̃ (l)||2≤ rγ̃2r + o(u)

∆G(l)=

(
∆T (l)

∆H(l) 0

)
with

||∆T (l)||2 ≤
√
rγr||T̂ (l)||2, ||∆H(l)||2= O(l2

√
rγr)||Ĥ(l)||2.

6. HSS inversion algorithm for linear system solutions. Another type of
direct HSS solvers is based on HSS inversion. The HSS inversion algorithm proposed
in [11] recursively applies the Sherman-Morrison-Woodbury (SMW) formula to obtain

20

the HSS generators of A−1 and then solves the linear system Ax = b by HSS matrix-
vector multiplications. This method is often used in the fast solutions of certain types
of integral equations [11], since the discretized matrices in those problems are often
well-conditioned. In addition, the inversion can take into consideration some physical
properties of the underling problems.

However, this HSS inversion may suffer from potential numerical instability due
to two main reasons. First, the U, V generators for A−1 may not have orthogonal
columns or bounded norms. Thus, the numerical stability for A−1b is expected to be
much worse than the case proved in Theorem 3.4. This issue can be fixed by the HSS
recompression algorithm proposed in [28], which orthogonalizes the generators U, V
for A−1 and results in a new set of orthogonal HSS generators. But this recompression
algorithm is much more expensive compared with other HSS algorithms. The other
reason is the stability issue of the SMW formula for general matrices. For example,
intuitions suggest that instability likely happens when the diagonal blocks of A are
not well conditioned, even if A itself is well-conditioned.

As a simple example, consider the solution of Ax = b with

(6.1) A =

(
D1 U1B1V

T
2

U2B2V
T
1 D2

)
, b ≡ (b1, b2, b3, b4)T ,

where

D1 = D2 = diag(ε, 1), 0 < ε < u, B1 = I,

U1 = U2 = V1 = V2 =

(
1
−1

)
,(6.2)

bi has magnitude of O(1).

The matrix A is well conditioned, as shown below.
Lemma 6.1. The matrix A defined in (6.1)–(6.2) is invertible and well condi-

tioned.
Proof. A is invertible since its determinant is −2ε − 1. To find the condition

number of A, we find the largest and the smallest eigenvalues of ATA as follows:

7

2
+ ε+

1

2
ε2 ± 1

2
(3 + ε)

√
ε2 − 2ε+ 5.

Thus, the condition number of A is

(
7
2 + ε+ 1

2ε
2 + 1

2 (3 + ε)
√
ε2 − 2ε+ 5

7
2 + ε+ 1

2ε
2 − 1

2 (3 + ε)
√
ε2 − 2ε+ 5

) 1
2

=
1 + 2ε

7
2 + ε+ 1

2ε
2 − 1

2 (3 + ε)
√
ε2 − 2ε+ 5

≤ 1
7
2 −

3
2

√
5
< 7.

We first consider the numerical solution with HSS inversion. The telescoping
representation of A looks like:

A = D(1) + U (1)B(1)(U (1))T ,

STABILITY OF HIERARCHICAL RANK STRUCTURED METHODS 21

where

D(1) = diag

((
ε

1

)
,

(
ε

1

))
,

U (1) = diag

((
1
−1

)
,

(
1
−1

))
, B(1) =

(
0 1
1 0

)
.

In HSS inversion, the SMW formula yields

A−1 = (D(1))−1 − (D(1))−1U (1)((B(1))−1 + (U (1))T (D(1))−1U (1)︸ ︷︷ ︸
T

)−1(U (1))T (D(1))−1.

We then solve Ax = b by multiplying A−1 and b through the following procedure.

1. Compute ẑ = fl
(
(D(1))−1b

)
=
(

b1
ε (1 +O(u)) b2

b3
ε (1 +O(u)) b4

)
T .

2. Compute T̂ = fl(T). In exact arithmetic,

T = (B(1))−1 + (U (1))T (D(1))−1U (1)

=

(
0 1
1 0

)
+

(
1 + 1

ε
1 + 1

ε

)
=

(
1 + 1

ε 1
1 1 + 1

ε

)
.

Due to the floating point rounding error, fl(1 + 1
ε) = 1

ε . Thus, we get

T̂ ≡ fl(T) =

(
1
ε (1 +O(u)) 1

1 1
ε (1 +O(u))

)
.

3. Finally, compute x̂ = fl
(
A−1b

)
= fl(ẑ − (D(1))−1U (1)T̂−1(U (1))T ẑ). Denote

t̂ = fl((U (1))T ẑ) =

(
b1
ε (1 +O(u))
b3
ε (1 +O(u))

)
, v̂ = fl(T̂−1t̂) =

(
b1(1 +O(u))
b3(1 +O(u))

)
,

where some terms are truncated since ε2 < u. Then the computed solution x̂
equals

x̂ = fl(A−1b) = fl(ẑ − (D(1))−1U (1)v̂) =


b1O(u)

ε
(b1 + b2)(1 +O(u))

b3O(u)
ε

(b3 + b4)(1 +O(u))

 .

We check the numerical stability by computing

Ax̂ =


−(b3 + b4) + b3O(u)

ε +O(u)

(b1 + b2 + b3 + b4)− b3O(u)
ε +O(u)

−(b1 + b2) + b1O(u)
ε +O(u)

(b1 + b2 + b3 + b4)− b1O(u)
ε +O(u)

 ,

which is far away from b. Thus, HSS inversion produces a poor solution even
if A is well conditioned.

On the other hand, if we apply HSS ULV-type algorithms to solve this problem,
we can get computed solutions with residual norms O(u). One ULV factorization
works as follows.

22

1. FactorizeD(1) = L(1)(L(1))T , where L(1) = diag

((√
ε

1

)
,

(√
ε

1

))
.

Since D(1) is a diagonal matrix, L(1) can be computed with high relative
accuracy.

2. Update off-diagonal by computing U1 =

(1√
ε

1

)
U1 =

(1√
ε

−1

)
, and find

a Givens rotation matrix Q1 from U1. Here,

fl(Q1) =

(√
ε(1 +O(u)) 1 +O(u)
1 +O(u) −

√
ε(1 +O(u))

)
.

Apply QT1 to U1 to get Û1 = fl(QT1 U1) =

(
0

1√
ε
(1 +O(u))

)
.

3. Denote Q(1) = diag(Q1, Q1)Ψ(1), and obtain

Â(0) = fl((Q(1))T (L(1))−1A(L(1))−TQ(1))

= diag

(
I,

(
1 1

ε (1 +O(u))
1
ε (1 +O(u)) 1

))
,

where the ones on the diagonal are analytically obtained from the identity
matrices due to the application of (L(1))−1 and (L(1))−T to the diagonal
blocks.

4. Update the right hand side as

fl(b) = fl((Q(1))T (L(1))−1b) =


(b1 + b2)(1 +O(u))
(b3 + b4)(1 +O(u))

b1√
ε
(1 +O(u))

b3√
ε
(1 +O(u))

 .

5. Compute the numerical solution ŷ to A(0)y = b and get

ŷ =


(b1 + b2)(1 +O(u))
(b3 + b4)(1 +O(u))√

εb3(1 +O(u))√
εb1(1 +O(u))

 .

6. Solve (Q(1))T (L(1))Tx = ŷ to get the numerical solution x̂ of Ax = b:

x̂ =


b1 + b2 + b3 +O(u)
b1 + b2 +O(u)

b1 + b3 + b4 +O(u)
b3 + b4 +O(u)

 .

To check the computational accuracy, we can see that the residual is ||Ax̂ −
b||2= O(u). This demonstrates the superior accuracy of the ULV solution method.
Comparison between the HSS inversion and HSS ULV-type algorithms on more general
matrices are provided in the next section.

7. Numerical experiments. In this section, we present numerical experiments
for testing the backward stability when solving Cx = b with different HSS algorithms
for C with small off-diagonal numerical ranks. In particular, the accuracies of various
HSS ULV factorization algorithms are compared with that of the HSS inversion. For
convenience, we use the following notation in the experiments:

STABILITY OF HIERARCHICAL RANK STRUCTURED METHODS 23

• κ2(C): 2-norm condition number of matrix C;

• r = ||Cx̂−b||2
||C||2||x̂||2 , where x̂ is the computed solution to Cx = b;

• r1: r when x̂ is computed with the HSS ULV algorithm in [6];
• r2: r when x̂ is computed with the generalized HSS Cholesky algorithm in

[30];
• r3: r when x̂ is computed with the HSS LDL algorithm in [26];
• r4: r when x̂ is computed with the HSS inversion algorithm in [11].

Here, we use above relative residual r as in [2, 7]. This choice is justified in [20] to
be around 1e−16 in double precision for classical numerically backward stable solvers,
which is independent of the condition number of test matrices.

The numerical experiments are performed in double precision and a relative toler-
ance τ = 10−15 is used in the HSS construction algorithm to make the approximation
error roughly in the same order as u. An exact solution x = (1, 1 . . . , 1)T is cho-
sen and the right hand side b = fl(Cx) is computed with unstructured matrix-vector
multiplication. We fix the leaf level HSS block row size to be 80.

Example 1. Consider a test matrix C defined by

C = λnI +Hn +Hn|I×I,

where λ = 0.994, Hn = (1
i+j−1)n×n is the Hilbert matrix, and I = {n, n− 1, . . . , 1}.

This test matrix is frequently used in the backward stability analysis for qua-
siseparable matrices [2, 7]. It is SPD and has small off-diagonal numerical ranks. We
can test the HSS solutions algorithms and provide a comprehensive comparison. The
numerical results are reported in Table 7.1.

Table 7.1
Relative residuals from various HSS algorithms for the matrix C in Example 1.

n κ2(C)
ULV factorization-based Inversion-based

r1 r2 r3 r4

1000 1.31e3 1.12e− 15 1.14e− 15 1.11− 15 6.27e− 14

1500 2.66e4 1.78e− 15 2.01e− 15 1.66− 15 6.75e− 13

2000 5.40e5 1.78e− 15 1.68e− 15 1.81− 15 1.48e− 11

2500 1.10e7 2.18e− 15 2.26e− 15 2.18− 15 5.15e− 10

3000 2.23e8 1.98e− 15 2.00e− 15 1.98− 15 2.76e− 8

3500 4.52e9 2.03e− 15 2.10e− 15 1.99− 15 6.57e− 9

4000 9.16e10 2.64e− 15 2.84e− 15 2.72− 15 2.32e− 8

4500 1.86e12 3.12e− 15 3.34e− 15 3.29− 15 1.23e− 7

We can see from Table 7.1 that, as we increase the size n of the matrix C, the
condition number κ2(C) increases accordingly. In the extreme case when n = 4500,
κ2(C) = 1.86e12 and C is very ill conditioned. With regard to the computed residuals,
r1, r2, r3 from HSS ULV-type algorithms retain orders of 1e−15 while r4 from the
HSS inversion algorithm increases from 6.24e−14 to only 1.23e−7, losing 7 digits
of accuracy. The results in Table 7.1 are consistent with our structured backward
stability conclusion in Section 4 for HSS ULV-type algorithms and the instability in
Section 6 for the HSS inversion algorithm.

24

Example 2. Consider a severely ill-conditioned nonsymmetric Cauchy matrix C
defined by

C =

(
1

ui + vi

)
n×n

,

where the vectors u and v are generated by the MATLAB function randn.

The condition numbers of these Cauchy matrices are in the orders of 1022, which
causes severe numerical instability for many direct solvers. Here, we only test the
HSS ULV algorithm in [6] and report the numerical results in Table 7.2 since other
ULV algorithms do not work for the nonsymmetric matrix. The relative residual r1

still maintains an order of 1e− 17 for all the tests.

Table 7.2
Relative residuals computed by the HSS ULV solution for the matrix C in Example 2.

n 1000 1500 2000 2500 3000 3500 4000 4500

κ2(C) 1.06e22 4.65e24 9.67e23 1.93e23 2.85e23 4.17e22 1.61e24 2.43e23

r1 3.75e−17 3.49e−17 3.87e−18 1.33−17 2.11e−18 1.45−17 4.77−18 5.99e−18

8. Conclusion. This paper provides systematic stability analysis for a series
of important HSS algorithms. We give rigorous justifications of the numerical error
propagation during the algorithms. The hierarchical rank structure plays a key role
in the stability. This provides insights into how we can improve the stability of some
existing algorithms based on quasiseparable or sequentially semiseparable algorithms.
We also show that ULV factorization-based HSS solutions are generally more accurate
that an HSS inversion based one. The analysis is justified with some numerical exam-
ples and reminds readers that the stability of HSS algorithms should not be taken as
granted. The derivation here can greatly benefit the study of the numerical stability
of other structured matrices and even structured sparse direct solvers.

Acknowledgments. The authors would like to thank Ming Gu and Huaian Diao
for some discussions. The authors also thank the anonymous referees for valuable
comments and suggestions which led to a significant improvement of the presentation.

REFERENCES

[1] Z. Bai, C.-R. Lee, R.-C. Li, and S. Xu, Stable solutions of linear systems involving long chain
of matrix multiplications, Linear Algebra Appl., 435 (2010), pp. 659–673.

[2] T. Bella, V. Olshevsky, and M. Stewart, Nested product decomposition of quasiseparable
matrices, SIAM. J. Matrix Anal. Appl., 34 (2013), pp. 1520–1555.

[3] D.A.Bini, P. Boito, Y. Eidelman, L. Gemignani and I. Gohberg, A fast implicit QR eigen-
value algorithm for companion matrices, Linear Algebra Appl. 432 (2010), pp. 2006–2031.

[4] S. Börm, L. Grasedyck, and W. Hackbusch, Introduction to hierarchical matrices with
applications, Eng. Anal. Bound. Elem, 27 (2003), pp. 405–422.

[5] S. Börm, Construction of data-sparse H2-matrices by hierarchical compression, SIAM J. Sci.
Comput., 31 (2009), pp. 1820–1839.

[6] S. Chandrasekaran, P. Dewilde, M. Gu, and T. Pals, A fast ULV decomposition solver
for hierarchically semiseparable representations, SIAM J. Matrix Anal. Appl., 28 (2006),
pp. 603–622.

[7] S. Chandrasekaran, P. Dewilde, M. Gu, T. Pals, X. Sun, A.-J. van der Veen, and
D. White, Some fast algorithms for sequentially semiseparable representations, SIAM J.
Matrix Anal. Appl., 27 (2005), pp. 341–364.

STABILITY OF HIERARCHICAL RANK STRUCTURED METHODS 25

[8] Y. Eidelman and I. Gohberg, On a new class of structured matrices, Integral Equations
Operator Theory, 34 (1999) pp. 293–324.

[9] F. M. Dopico, V. Olshevsky, and P. Zhlobich, Stability of QR-based fast system solvers for
a subclass of quasiseparable rank one matrices, Math. Comp. 82 (2013), pp. 2007–2034.

[10] A. Gillman and P. G. Martinsson, A direct solver with O(N) complexity for variable co-
efficient elliptic PDEs discretized via a high-order composite spectral collocation method,
SIAM J. Sci. Comput., 36 (2014), pp. A2023–A2046.

[11] A. Gillman, P. Young, and P. G. Martinsson, A direct solver with O(N) complexity for
integral equations on one-dimensional domains, Front. Math. China, 7 (2012), pp. 217–247.

[12] G. H. Golub and C. V. Loan, Matrix Computations, The Johns Hopkins University Press,
Baltimore, MD, 3rd edition, 1996.

[13] L. Greengard and V. Rokhlin, A fast algorithm for particle simulations, J. Comput. Phys.,
73 (1987), pp. 325–348.

[14] M. Gu and S. C. Eisenstat, Efficient algorithms for computing a strong-rank revealing QR
factorization, SIAM J. Sci. Comput., 17 (1996), pp. 848–869.

[15] W. Hackbusch, A sparse matrix arithmetic based on H-matrices. Part I: Introduction to
H-matrices, Computing, 62 (1999), pp. 89–108.

[16] W. Hackbusch and B. N. Khoromskij, A sparse H-matrix arithmetic. Part II: Application
to multi-dimensional problems, Computing, 64 (2000), pp. 21–47.

[17] W. Hackbusch, B. Khoromskij, and S. Sauter, On H2-matrices, in Lectures on Applied
Mathematics, H. Bungartz, R. H. W. Hoppe, and C. Zenger, eds., Springer, Berlin, 2000,
pp. 9–29.

[18] W. Hackbusch, Hierarchische Matrizen: Algorithmen und Analysis, Springer, Berlin, 2009.
[19] N. Halko, P.G. Martinsson, and J. Tropp, Finding structure with randomness: Probabilistic

algorithms for constructing approximate matrix decompositions, SIAM Review, 53 (2011),
pp. 217–288.

[20] N. J. Higham, Accuracy and Stability of Numerical Algorithms, SIAM, Philadelphia, PA,
second ed., 2002.

[21] K. L. Ho and L. Greengard, A fast direct solver for structured linear systems by recursive
skeletonization, SIAM J. Sci. Comput., 34 (2012), pp. 2507–2532.

[22] W. Lyons, Fast Algorithms with Applications to PDEs, PhD thesis, University of California
Santa Barbara, USA, 2005.

[23] P. G. Martinsson, A fast randomized algorithm for computing a hierarchically semiseparable
representation of a matrix, SIAM. J. Matrix Anal. Appl., 32 (2011), pp. 1251–1274.

[24] R. Vandebril, M. Van Barel, G. Golub, and N. Mastronardi, A bibliography on semisep-
arable matrices, CALCOLO, 42 (2005), pp. 249–270.

[25] Y. Xi, J. Xia, S. Cauley, and V. Balakrishnan, Superfast and stable structured solvers for
Toeplitz least squares via randomized sampling, SIAM J. Matrix Anal. Appl., 35 (2014),
pp. 44–72.

[26] Y. Xi, J. Xia, and R. Chan, A fast randomized eigensolver with structured LDL factorization
update, SIAM J. Matrix Anal. Appl., 35 (2014), pp. 974–996.

[27] Y. Xi, R. Li, and Y. Saad, An algebraic multilevel preconditioner with low-rank corrections
for sparse symmetric matrices, SIAM J. Matrix Anal. Appl., 37 (2016), pp. 235–259.

[28] J. Xia, On the complexity of some hierarchical structured matrix algorithms, SIAM J. Matrix
Anal. Appl., 33 (2012), pp. 388–410.

[29] J. Xia, Efficient structured multifrontal factorization for general large sparse matrices, SIAM
J. Sci. Comput., 35 (2013), pp. A832–A860.

[30] J. Xia, S. Chandrasekaran, M. Gu, and X. S. Li, Fast algorithms for hierarchically semisep-
arable matrices, Numer. Linear Algebra Appl., 17 (2010), pp. 953–976.

[31] J. Xia and M. Gu, Robust approximate Cholesky factorization of rank-structured symmetric
positive definite matrices, SIAM J. Matrix Anal. Appl., 31 (2010), pp. 2899–2920.

[32] J. Xia, Y. Xi, and M. Gu, A superfast structured solver for Toeplitz linear systems via ran-
domized sampling, SIAM J. Matrix Anal. Appl., 33 (2012), pp. 837–858.

[33] J. Xia, Y. Xi, S. Cauley, and V. Balakrishnan, Fast sparse selected inversion, SIAM J.
Matrix Anal. Appl., 36 (2015), pp. 1283–1314.

