
MULTI-LAYER HIERARCHICAL STRUCTURES
AND FACTORIZATIONS

JIANLIN XIA∗

Abstract. We propose multi-layer hierarchically semiseparable (MHS) structures for the fast
factorizations of dense matrices arising from multi-dimensional discretized problems such as certain
integral operators. The MHS framework extends hierarchically semiseparable (HSS) forms (which
are essentially one dimensional) to higher dimensions via the integration of multiple layers of struc-
tures, i.e., structures within the dense generators of HSS forms. In the 2D case, we lay theoretical
foundations for MHS structures and justify the feasibility of MHS approximations based on the
fast multipole method (FMM) and algebraic techniques such as structure-preserving rank-revealing
factorizations. Rigorous rank bounds and conditions for the structures are given. Representative
subsets of mesh points and a multi-layer tree are used to intuitively illustrate the structure. The
MHS framework makes it convenient to explore FMM structures and perform direct factorizations.
We can naturally design and analyze MHS algorithms by taking advantage of existing methods and
analysis for simple HSS methods. In particular, we can design fully stable and scalable multi-layer
ULV (MULV) factorizations that can preserve the inner structures and have nearly linear complexity
under certain conditions. An idea of reduced matrices is used to show the structured factorizations
and the recursive sparsification of the mesh. We also establish intrinsic connections between dense
MULV factorizations and sparse structured multifrontal factorizations, which bridges the gaps among
different types of hierarchical solvers, and facilitates the sharing of ideas and the study and design
of new algorithms. The new structures and algorithms can be used for the direct solution of some
multi-dimensional discretized problems with nearly linear complexity and storage.

Key words. MHS structure, representative subset, MULV factorization, reduced matrix, fast
direct solver, linear complexity

AMS subject classifications. 15A23, 65F05, 65F30

1. Introduction. In recent years, rank structured matrices have been widely
used for the fast direct solution of some integral and differential equations, especially
elliptic problems. See [1, 4, 6, 7, 10, 11, 17, 19, 22, 23, 28, 29, 32] for a partial list of
references. A basic idea of these methods is to approximate the dense matrices or fill-in
by rank structured forms. Such dense matrices include discretized integral operators,
inverses of discretized PDEs, and Schur complements in the direct factorizations of
some sparse matrices. PDE/integral equation theories together with linear algebra
techniques show that certain off-diagonal blocks of these dense matrices have small
numerical ranks.

Several rank structured forms have been designed for the approximation of these
dense matrices. Among the most widely used ones are hierarchical structured matrices
such as H [3], H2 [4], and hierarchically semiseparable (HSS) matrices [6, 33]. H/H2

matrices and matrices based on the fast multipole method (FMM) are applicable to 2D
and 3D cases. However, these structures are often sophisticated, and the analysis of
their numerical behaviors such as stability is not very convenient. The HSS structure
aims at 1D cases, but is based on simple bisection and is much easier to use and
analyze. It is thus suitable for practical implementations and is easily accessible to the
general scientific computing community. In particular, efficient, stable, and scalable
HSS operations (especially ULV-type factorizations [6, 33]) are available. Moreover,
the hierarchical approximation accuracy and backward stability of HSS methods are
well studied [24, 25]. For more general sparse problems, the applicability of HSS

∗Department of Mathematics, Purdue University, West Lafayette, IN 47907 (xiaj@math.purdue.
edu). The research of Jianlin Xia was supported in part by an NSF CAREER Award DMS-1255416.

1

2 JIANLIN XIA

matrices can be extended via the integration into sparse matrix techniques such as
nested dissection [9] and the multifrontal method [8].

Existing HSS-based structured direct solvers work well for 1D discretized integral
equations and 2D discretized elliptic PDEs. However, the efficiency is usually less
satisfactory for higher dimensions. One strategy is to approximate the dense matrices
corresponding to two dimensions still by HSS forms. Although this simplifies the
implementation, the performance of the resulting methods is not optimal for large
sizes due to the large off-diagonal ranks. For example, the sparse direct solvers in
[28, 29] with HSS approximations of fill-in have up to O(n4/3) complexity for 3D
discretized elliptic PDEs, where n is the size of the sparse matrix. Special care needs
to be taken to reach nearly O(n) complexity.

In some recent studies, additional structures within some HSS approximations
have been explored. In fact, it has long been noticed that, in some applications,
the dense blocks (called generators) that define the HSS forms are also structured
[7, 30, 34, 36]. By taking advantage of such structures, it is possible to design multi-
dimensional structured algorithms for dense discretized matrices just based on simple
HSS methods. For example, in a fast selected inversion algorithm [35], some diagonal
and off-diagonal blocks of the inverse of a sparse matrix are approximated by HSS and
low-rank forms, respectively. For some 2D discretized integral operators, the method
in [7] exploits the inner structures with the aid of potential theories, and matrix
compression is obtained directly based on thin layers of boundary mesh points. The
method in [7] directly inverts the 2D discretized matrix, and intermediate operations
such as HSS inversion and recompression can be quite expensive.

In this work, we propose a multi-layer hierarchically semiseparable (MHS) struc-
ture for multiple dimensions. We show the feasibility of using MHS forms to ap-
proximate some discretized kernel functions on 2D domains, and the idea can also be
generalized to higher dimensions. We exploit additional structures under the general
FMM framework. For some integral kernels on 2D domains, if HSS forms are used
for the approximation, we show that the dense generators have inner HSS or low-rank
structures. Unlike the method in [7], we consider general FMM interactions between
all the subdomains resulting from nested bisection based on algebraic methods. A
structure-preserving rank-revealing factorization [13, 36] is used to produce subsets
of representative points in the mesh. Unlike in [7], the representative points are not
limited to just boundary points. The points are organized into hierarchical levels,
and help to justify the existence of additional structures within the HSS generators.
Rigorous rank bounds for the low-rank structures are given, together with the con-
ditions such as certain proper ordering. A systematic definition of the MHS form is
then presented. The storage of the MHS form is nearly linear in the matrix size.

The MHS framework makes it very convenient to explore FMM structures and
design efficient MHS algorithms. In particular, a fast multi-layer/MHS ULV (MULV)
factorization is proposed. This generalizes HSS ULV factorizations in [6, 36] to mul-
tiple layers. In an outer HSS ULV factorization, the diagonal blocks are further
factorized with an inner ULV factorization. The inner-layer structures are preserved
during the elimination process, due to certain attractive properties of ULV factor-
izations. We can conveniently perform the elimination based on the representative
subsets, so that the original MHS matrix is hierarchically reduced into smaller MHS
forms which correspond to subsets of the mesh points. The original matrix and mesh
are thus recursively sparsified. The final reduced MHS form is just an HSS form. The
MULV factorization can thus be intuitively illustrated and performed. This is similar

MHS STRUCTURES AND FACTORIZATIONS 3

to the idea of reduced HSS matrices in [36, 29] and the idea of skeletonization in [15].
Here, the multi-layer design enables us to recursively perform HSS ULV factorization
so as to keep the algorithm simple to implement and analyze. No HSS inversion or
recompression as in [7] is needed.

The MULV factorization has nearly linear complexity under certain conditions.
Its numerical stability immediately follows from the HSS stability analysis in [25]. It
is also fully scalable and has a great potential for large-scale parallel computations.

Additionally, we reveal some intrinsic connections between the dense HSS ULV
factorization and the sparse multifrontal factorization, and between the MULV fac-
torization and the structured multifrontal methods in [29, 32]. This helps the under-
standing of different types of hierarchical solvers, and enables us to exchange ideas
among different hierarchical structured algorithms. This is very useful for the design
of new algorithms and for the analysis of different solvers with similar techniques.
Then naturally, we may also directly apply MHS methods to some sparse matrices.

We verify the feasibility of MHS approximations and the efficiency of MHS factor-
izations in some numerical tests. For some discretized matrices, an HSS approximation
would have maximum off-diagonal rank (called HSS rank) growing quickly with the
matrix size N , while in the MHS approximation, a rank bound for the structural mea-
surement (called MHS rank) grows very slowly. For reasonable N , the MHS ranks are
significantly smaller than the HSS ranks. The benefit of MHS structures is further
demonstrated with the performance comparison of MHS and HSS factorizations.

The outline of the presentation is as follows. We first discuss structure-preserving
low-rank factorizations and representative subsets in Section 2. The design of MHS
structures is shown in detail in Section 3, followed by the development of MHS algo-
rithms (especially MULV factorizations) in Section 4. Section 5 shows the numerical
tests. The following is a list of some notation.

• For a set of points Ω, |Ω| denotes its cardinality.
• For a node i of a binary tree, sib(i) and par(i) denote the sibling and parent
of i, respectively.
• For a binary tree T , root(T) denotes its root.
• For a matrix A and index sets I and J, A|I denotes a submatrix of A consisting
of its rows selected by I, and A|I×J corresponds to the selection of row and
column entries based on I and J, respectively.
• σj(C) denotes the jth largest singular value of a matrix C.

2. Separated sets, structure-preserving low-rank approximations, and
representative subsets. In this section, we generalize the concept of well-separated
sets, introduce the notion of representative points in low-rank approximations, and
discuss the proper ordering of representative points. These serve as preliminaries for
our later design of the MHS structure.

2.1. Generalization of well-separated sets. Consider the discretization of a
kernel function of the form ϕ(|y−z|), where y and z are points inside certain domains
and |y − z| is their distance. Some examples of ϕ are 1

|y−z| ,
1

|y−z|2 , and log |y − z|,
where y ̸= z. Suppose Ω1 and Ω2 are two sets of points. We look at the numerical
rank of the following discretized matrix for a finite number of points yi and zj :

(2.1) K = (ϕ(|yi − zj |))yi∈Ω1,zj∈Ω2
.

For convenience, we refer to K in (2.1) as the interaction (matrix) between Ω1 and
Ω2.

4 JIANLIN XIA

In FMM, in general, two sets Ω1 and Ω2 are considered well separated if their
distance is greater than or equal to their diameters so that the function ϕ(||y−z||) for
y ∈ Ω1 and z ∈ Ω2 can be approximated by a series with a finite number (r0 = log(τ))
of terms to reach any given accuracy τ [2, 12]. Correspondingly, the matrix K in (2.1)
has a small numerical rank. For convenience, we say that ϕ has a finite-term multipole
expansion (with respect to the tolerance τ), and denote this by

(2.2) ϕ(|y − z|) ≈
r0∑
i=1

fi(y)gi(z).

Then consider more general cases where Ω1 and Ω2 are not well separated. For
example, suppose Ω1 and Ω2 are 1D sets as in Figure 2.1(a). (Later, we do not
strictly distinguish a domain and a set. In our figures, we usually only draw a domain
to indicate a set.) The two sets are not well separated. In FMM, the sets are further
partitioned. If we consider Ω̃1, the left subset of Ω1 as in Figure 2.1(b) that is not
adjacent to Ω1, then Ω̃1 and Ω2 are well separated. Thus, (ϕ(|yi − zj |))yi∈Ω̃1,zj∈Ω2

is numerically low rank. This process is recursively applied to Ω1\Ω̃1. It is repeated
O(log |Ω1|) times, so that the numerical rank of K becomes O(log |Ω1|). In general,
we partition the set with a smaller cardinality.

y0

(a) Two adjacent sets in 1D (b) Well-separated sets in the usual sense

Fig. 2.1. Separation of two sets in 1D.

To consider more general cases in multiple dimensions, we relax the usual concept
of well separated sets as follows.

Definition 2.1. (Separated sets) Let δ(y0,Ω1) denote the distance between a
point y0 and a set Ω1. Two sets Ω1 and Ω2 are separated (or α-separated) for a
constant α > 0 if there exist points y0, z0 and constants d1, d2, such that

δ(y0,Ω1) ≤ d1, δ(z0,Ω2) ≤ d2, |y0 − z0| ≥ d1 + d2 + αmin{d1, d2}.

Ω1 and Ω2 are well separated if α > 1.
For example, consider 2D sets Ω1 and Ω2 in Figure 2.2(a) that are not separated.

On the other hand, we can get a subset Ω̃1 of Ω1 as in Figure 2.2(b), so that we can
choose x0 ∈ Ω̃1 and y0 ∈ Ω2 as shown and verify that Ω̃1 and Ω2 are α-separated for
a constant α > 0. For example, if Ω1 and Ω2 are two unit squares, then

δ(y0,Ω1) ≤ d1 ≡
√
10

4
, δ(z0,Ω2) ≤ d2 ≡

√
2

2
,

|y0 − z0| =
5

4

√
2 ≥ d1 + d2 + αmin{d1, d2}, with α ≈ 0.38.

After this, the set Ω1\Ω̃1 can be similarly processed via recursion. Thus, the
numerical rank of K in (2.1) becomes O(log |Ω1|). Later for convenience, we say that
Ω1 and Ω2 are weakly or logarithmically separated.

Definition 2.2. (Logarithmically-separated sets) Two sets of points Ω1 and
Ω2 are logarithmically separated if one of the sets, say, Ω1 can be partitioned into

MHS STRUCTURES AND FACTORIZATIONS 5

z0

y0

(a) Two adjacent sets in 2D (b) Well-separated sets in the usual sense

Fig. 2.2. Separation of two sets in 2D.

O(log |Ω1|) subsets, all α-separated from Ω2 for a constant α > 0, except a constant
number of subsets each containing O(1) points.

The sets Ω1 and Ω2 in Figures 2.1(a) and 2.2(a) are thus logarithmically separated.
Similarly, it can be verified that Ω1 and Ω2 in Figure 2.3 are logarithmically separated.

(a) One example (b) Another example

Fig. 2.3. Examples of logarithmically-separated sets in two dimensions, where the points in Ω1

correspond to a narrow band.

Based on these definitions, we have the following simple lemma.
Lemma 2.3. If two sets Ω1 and Ω2 are logarithmically separated and ϕ has

a finite-term multipole expansion with respect to a tolerance τ , then the discretized
matrix K in (2.1) has numerical rank O(log(min{|Ω1|, |Ω2|})) with respect to τ .

Remark 2.1. (Kernel expansion assumption) In all the following discussions, we
assume ϕ(|y−z|) has a finite-term multipole expansion with respect to the tolerance τ
for y and z in two α-separated sets. Thus, when we say a matrix has a small numerical
rank, we mean that the numerical rank is O(1) with respect to the relative tolerance
τ . We often do not explicitly mention the tolerance unless it is different from τ .

2.2. Structure-preserving rank-revealing factorization and representa-
tive points. For a matrix such as K in (2.1) with a small numerical rank r, a
rank-revealing factorization may be used to compute a low-rank approximation to it.
In particular, a reliable scheme is the strong rank-revealing QR (RRQR) factorization
[13]. It can yield a factorization of the form (for convenience, an LQ factorization is
written below)

K ≈ Π

(
L1

L2

)
Q = Π

(
I
E

)
(L1Q) ≡ UK|I, with(2.3)

U = Π

(
I
E

)
, E = L2L

−1
1 , K|I = L1Q.

6 JIANLIN XIA

where Π is a permutation matrix, L1 is r × r and is made to have a determinant as
large as possible, and the entries of E are bounded by a small constant. K|I thus cor-
responds to selected rows of K. The factorization UK|I is also called an interpolative
decomposition [14] or structure-preserving rank-revealing (SPRR) factorization [36].
More intuitively, we say this is to select representative rows from K with I. If K is
from (2.1), then I corresponds to selected points in Ω1. Therefore, this factorization
can be understood as the selection of representative points.

If Ω1 and Ω2 are not well separated as in Figure 2.4(a), then partition Ω1 into
subsets at multiple levels, as done in FMM. Suppose the subsets are located within
boxes at lmax levels, with the boundary level or level lmax right adjacent to Ω2. For
convenience, suppose each box at level lmax has a constant size h. Level lmax − 1
also consists of boxes of size h. Also, suppose the partition is fine enough so that the
number of points within each box at these two levels is a constant r0. The box sizes
increase for boxes away from the boundary. The boxes at levels lmax − 1, lmax − 2, . . .
are well separated from Ω2, so that representative points can be selected from each
box (marked as black dots), as also done in [7]. (In practice, all the points within a box
at levels lmax and lmax − 1 can be considered as representative points.) The process
yields a sequence of representative points that can be collected into a representative
subset.

(a) Representative points at different levels (b) Tree organization of the points

Fig. 2.4. Study of the interaction between Ω1 and Ω2 in FMM, and the selection of represen-
tative subsets in Ω1. The locations of the representative subsets are for illustration purpose only.

Definition 2.4. The collection I of all the representative points within Ω1 due
to the SPRR factorization of the interaction between Ω1 and Ω2 is called a represen-
tative subset of Ω1 (with respect to Ω2). For convenience, this process of selecting
representative points is denoted by

(2.4) I = SPRR(Ω1,Ω2).

The complementary representative subset Î of I in Ω1 is Î ≡ Ω1\I.

2.3. Proper ordering of representative points. The points in the represen-
tative subset I are located at lmax = O(log |I|) hierarchical levels. We can organize
these points with the aid of a binary tree, called a representative subset tree, where
the nodes correspond to the boxes and the representative points inside. A larger box
at level l − 1 and two smaller adjacent boxes at level l define a parent-children rela-
tionship. The boxes at levels lmax and lmax − 1 are associated with the leaves. See
Figure 2.4(b). For convenience, we use I(l) to denote all the representative points at
level l of the tree, called the l-th slice of I, so that

(2.5) I =

lmax∪
l=1

I(l).

MHS STRUCTURES AND FACTORIZATIONS 7

In our design of MHS structures later, it is important to order the points within I
in an appropriate way to obtain desired rank structures. Here, we order them following
the postorder of the representative subset tree. This ensures that the representative
points within each slice I(l) are ordered consecutively in a uniform way.

Definition 2.5. (Proper order) If the points in I are ordered following the
postorder of the corresponding representative subset tree, we say that I is properly
ordered.

3. MHS structures. We now show the detailed design of MHS structures and
lay the theoretical foundation.

3.1. HSS structures and motivation for MHS structures. The HSS struc-
ture is a convenient tool to study the mutual interactions for points inside 1D domains
[6, 33]. In an HSS form, an N ×N matrix H is partitioned into a block 2 × 2 form,
and the partition is then recursively done on the two diagonal blocks. This can be
organized through a binary tree T called HSS tree. The resulting off-diagonal blocks
at all levels are represented or approximated by low-rank forms.

In particular, assume i is a node of T with two children c1 and c2. In an HSS rep-
resentation, i is associated some matrices Di, Ui, Vi, Ri,Wi, Bi, called HSS generators.
Di is the diagonal block and Ui, Vi are off-diagonal basis matrices. More specifically,
these generators are hierarchically defined as
(3.1)

Di ≡ H|Ii×Ii =

(
Dc1 Uc1Bc1V

T
c2

Uc2Bc2V
T
c1 Dc2

)
, Ui =

(
Uc1Rc1

Uc2Rc2

)
, Vi =

(
Vc1Wc1

Vc2Wc2

)
,

whether Ii is the index set for Di in H and satisfies the hierarchical relation Ii =
Ic1 ∪ Ic2 . For the root node k, Ik = {1 : N}. It can be seen that U and V are also
basis matrices of the blocks H|Ii×(Ik\Ii) and H|(Ik\Ii)×Ii

, called HSS blocks. The
maximum rank or numerical rank of all the HSS blocks is called the HSS rank of H.

HSS matrices can be constructed based on direct compression or randomized
sampling [14]. Randomized sampling applied to a low-rank matrix Φ converts its
direct compression into the compression of ΦX, where X is a random skinny matrix
with column size slightly larger than the rank of Φ. An SPRR factorization similar
to (2.3) can then be applied to Φ:

Φ = UΦ|I, U = Π

(
I
E

)
.

The idea of randomized HSS construction is initially given in [20]. For an order
N dense matrix A with HSS rank r, an HSS representation or approximation can be
computed based on the products of A with O(r) random vectors, plus O(rN) entries
from A [20, 36]. The methods in [18, 26] use O(r logN) matrix-vector products, but
without any explicit entries of H. The method in [26] further incorporates a strategy
in [14] that can adaptively estimate the number of matrix-vector products needed.
The HSS approximation error is given in [25].

The HSS structure has some significant benefits, include its simplicity, well-
established fast and stable operations, and the convenient error and stability analysis.
However, the HSS structure focuses on 1D problems. For higher dimensions, it be-
comes less effective due to the high HSS ranks. On the other hand, many subblocks
of the discretized matrix may still have small numerical ranks, following the idea of
FMM (see Section 2.1).

8 JIANLIN XIA

As mentioned in Section 1, we seek to design multi-dimensional structures still
based on HSS forms, so as to keep the structure simple and to take advantage of
existing HSS algorithms and analysis. This involves the study of the interior structures
within the HSS generators, so as to establish a new hierarchical structure consisting of
multiple layers of simple HSS forms. To illustrate this, we consider the discretization
of a kernel ϕ over a 2D set Ω with the assumption in Remark 2.1, and the discretized
matrix is

(3.2) A = (ϕ(|yi − yj |))yi,yj∈Ω.

(The diagonal entries Aii may be specified otherwise.) Suppose N = |Ω|. The matrix
A is N ×N and symmetric.

3.2. MHS structures – outer layer structures. In the design of MHS struc-
tures, there are two layers of trees for the 2D case, an outer layer and an inner layer.
To explore the outer layer tree structure, we use nested bisection to partition the
domain/set Ω into a sequence of subdomains. That is, the domain is split into two
subdomains, and each subdomain is recursively split. This is similar to the usual
nested dissection partition [9], but does not involve a separator of mesh points. A
postordered binary tree T called nested bisection tree is then set up, where each leaf
corresponds to a bottom level subdomain, and each parent corresponds to an upper
level domain or the union of the subdomains associated with its children. See Figure
3.1. Here, we suppose the root is at level 0 and the leaves are at the largest level.

1 2

i j

3

k

1 2

(a) Nested bisection of a domain (b) Nested bisection tree

Fig. 3.1. Nested bisection of a domain and the corresponding tree T for the subdomains.

After the application of nested bisection to the points in Ω, we reorder the matrix
A in (3.2) following the ordering of the leaves of T. Later, we suppose A is already
reordered. We then construct an HSS approximation to A by compressing the HSS
blocksA|Ωi×(Ω\Ωi) for each subset Ωi ⊂ Ω. This is done via the study of the interaction
of Ωi with its exterior or complement Ω\Ωi.

For example, consider Ωi in Figure 3.2(a) and its interaction with Ω\Ωi. Similarly
to Figure 2.4, Ωi is partitioned into multiple levels of boxes of different sizes. The
sizes of the boxes double when their locations are farther away from the boundary.
These boxes not inside the boundary level are well separated from Ω\Ωi. Suppose
there are m boxes along the boundary level, then the total number of boxes inside
Ωi that are well separated from Ω\Ωi is O(m). We can then select representative
points from each box. The collection of these points is a representative subset Ii in
Ωi (Figure 3.2(b)).

MHS STRUCTURES AND FACTORIZATIONS 9

Ii

(a) A subdomain Ωi within Ω (b) Representative subset Ii

Fig. 3.2. Study of the interaction between Ωi and Ω\Ωi for a subdomain Ωi ⊂ Ω.

For convenience, we introduce the following notation.
• For a subset Ωi ⊂ Ω, we use Ω̂i ≡ Ω\Ωi to denote the complement of Ωi in
Ω.
• As in Definition 2.4, Ii ⊂ Ωi denotes the representative subset within a set
Ωi with respect to Ω̂i:

Ii = SPRR(Ωi, Ω̂i).

• Îi = Ωi\Ii denotes complementary representative subset of Ii in Ωi.
• Πi denotes an appropriate permutation matrix like in (2.3).

In the following, we study the off-diagonal blocks of A in (3.2) or the interactions
among different subdomains of Ω. After the nested bisection ordering, we can write

A =

(
A|Ω1×Ω1 A|Ω1×Ω̂1

A|T
Ω1×Ω̂1

A|Ω̂1×Ω̂1

)
Ω1

Ω̂1
.

The submatrix A|Ω1×Ω̂1
corresponds to the interaction between Ω1 and Ω̂1. According

to the representative subset section, we have a factorization similar to (2.3):

(3.3) A|Ω1×Ω̂1
≈ U1A|I1×Ω̂1

, with U1 = Π1

(
I
E1

)
.

The basis matrix U1 is thus obtained.
Suppose Ω2 ⊂ Ω is the sibling set of Ω1 in nested bisection. That is, Ω1 and Ω2

correspond to a pair of sibling nodes in the tree in Figure 3.1. Just like above, we can
obtain a representative subset I2 ⊂ Ω2 (Figure 3.3(a)), so that

(3.4) A|Ω2×Ω̂2
=
(
A|Ω2×Ω1 A|Ω2×Ω̂3

)
≈ U2A|I2×Ω̂2

, with U2 = Π2

(
I
E2

)
,

where Ω̂3 is the complement of the parent set Ω3 = Ω1 ∪ Ω2.
We can then write A as

A =

 A|Ω1×Ω1 A|Ω1×Ω2 A|Ω1×Ω̂3

A|Ω2×Ω1 A|Ω2×Ω2 A|Ω2×Ω̂3

A|Ω̂3×Ω1
A|Ω̂3×Ω2

A|Ω̂3×Ω̂3

 Ω1

Ω2

Ω̂3

,

10 JIANLIN XIA

As in symmetric HSS constructions, it is natural to let

(3.5) D1 = A|Ω1×Ω1 , D2 = A|Ω2×Ω2 , B1 = A|I1×I2 ,

so that

(3.6) D3 ≡
(

A|Ω1×Ω1 A|Ω1×Ω2

A|Ω2×Ω1 A|Ω2×Ω2

)
≈
(

D1 U1B1U
T
2

U2B2U
T
1 D2

)
.

The choice of B1 is due to the selection of the representative subsets [20, 36].

I1 I2 I3

(a) Representative subsets in Ω1 and Ω2 (b) Representative subset in Ω1 ∪ Ω2

(c) The upper level (d) Representative subset at the upper level

Fig. 3.3. Study of the interactions between some sets and their complements in Ω.

In HSS construction, the next step is to conduct compression associated with the

parent node 3 so as to find a nested basis matrix U3 =

(
U1

U2

)(
R1

R2

)
for

A|Ω3×Ω̂3
≡
(

A|Ω1×Ω̂3

A|Ω2×Ω̂3

)
.

U3 results from the interaction between Ω3 and Ω̂3. To find

(
R1

R2

)
, we need to study

the interaction between I1 ∪ I2 and Ω̂3. That is, we select a representative subset I3
from I1 ∪ I2. In Figure 3.3(a), we can see that some boundary representative points
in I1 and I2 becomes interior points located within some boxes well separated from
Ω̂3. We just need to further select representative points from these points, and keep
the other boundary representative points in I1 and I2 as in Figure 3.3(b). This
representative subset selection yields(

R1

R2

)
= Π3

(
I
E3

)
.

When we move to upper levels, similar procedures apply. See Figures 3.3(c–d) and
3.4(a–b). This is repeated for all the nodes (except root(T)) of the nested bisection
tree T (Figure 3.1), so as to produce an HSS approximation to A.

Clearly, the number of points within each representative subset Ii is the numerical
rank of the HSS blockA|Ωi×Ω̂i

. Thus, we have the following lemma, which is consistent
with FMM and a rank pattern result in [27].

MHS STRUCTURES AND FACTORIZATIONS 11

(a) Representative subsets within some (b) Representative subset

subdomains at a certain level at an upper level

Fig. 3.4. Representative subsets at upper levels.

Lemma 3.1. If Ω is an M × M uniform mesh, then the HSS block A|Ωi×Ω̂i

associated with node i at level l of T has numerical rank

(3.7) r̃l = O(Ml) ≡ O
(
M/2⌊l/2⌋

)
,

where the diagonal generator Di of A has size O(M2
l).

3.3. MHS structures – inner layer structures. Lemma 3.1 indicates that
the HSS rank of A may be as large as O(M) = O(

√
N). An HSS approximation to A

is generally not very effective. For example, it costs O(N3/2) flops to factorize it. To
reduce this cost to about O(N), we study the inner layer structures or the structures
within the HSS generators from the previous subsection.

We set a switching level ls for the nodes of the nested bisection tree T, so that if
a node is at a level above ls, we exploit the inner structures of the HSS generators.
Thus, the generators below ls are treated as in the regular HSS case. This avoids
operating on blocks that are too small, and also ensures that the outer HSS generator
sizes are large enough for the asymptotic inner-layer rank estimates to hold. We can
establish a two-layer tree T from T, which has outer-layer nodes from levels 0 to ls of
T. A node i at level ls of T is treated as a leaf of T , and Di is treated as an HSS form
generator. The off-diagonal numerical ranks of Di satisfy Lemma 3.1, and the HSS
tree of Di is simply the subtree of T associated with i, which is an inner-layer tree.
The non-leaf nodes of T are also associated with inner-layer trees, as shown next.

3.3.1. Structures within the B generators. First, we show the structures
within the Bi generators. According to the previous discussions, Bi has the form (see,
e.g., (3.5))

(3.8) Bi = A|Ii×Ij ,

where j = sib(i). (Unlike in [7], Bi here may not be a square matrix). See Figure
3.5(a) for an illustration of the representative subsets Ii and Ij . We show that Bi can
be approximated by an HSS form when Ii and Ij are properly ordered.

Notice that the points within Ii are located at O(log |Ii|) levels, similar to the
discussions in Section 2.3 for Figure 2.4. We can similarly organize the points in
Ii with the aid of a representative subset tree, where each node may have several

12 JIANLIN XIA

Ii Ij

Ii,1

Ij,2

(a) Representative subsets Ii and Ij (b) Partition of Ii and Ij

Fig. 3.5. Study of the interaction between two representative subsets Ii and Ij for siblings i
and j of T .

children. The tree can then be used to obtain a proper order of Ii as in Definition 2.5.
The representative subset trees for Ii and Ij can be used to recursively bipartition Ii
and Ij . For example, with one level of partition, we have

(3.9) Ii = Ii,1 ∪ Ii,2, Ij = Ij,1 ∪ Ij,2.

See Figure 3.5(b). Based on the partition, we have the following result.
Theorem 3.2. Suppose Ωi and Ωj are sibling subsets in the nested bisection

of a mesh of uniformly distributed points, and Ii and Ij are representative subsets
selected from Ωi and Ωj, respectively, and are properly ordered. Assume |Ii| = O(m),
|Ij | = O(m). With the assumption in Remark 2.1, Bi in (3.8) and A|Ii×Ii have HSS
ranks O(log2 m) and can thus be approximated by (rectangular) HSS forms. Therefore,
if Ω is an M ×M uniform mesh, then the Bi generators at level l of T have HSS
ranks O(log2 Ml) ≡ O

(
log2 M

2⌊l/2⌋

)
.

Proof. We show that Bi can be approximated by a rectangular HSS form. The
proof for A|Ii×Ii is similar. Following the partition (3.9), we can write

Bi =

(
A|Ii,1×Ij,1 A|Ii,1×Ij,2

A|Ii,2×Ij,1 A|Ii,2×Ij,2

)
.

Since Ii and Ij are properly ordered, it is sufficient to show that the numerical rank of
A|Ii,1×Ij,2 is O(log2 m), and the proof is similar for the off-diagonal blocks of A|Ii,1×Ij,1

and A|Ii,2×Ij,2 at lower levels.
The points within Ii,1 are located at lmax ≡ O(logm) levels. Following the nota-

tion in (2.5), we write Ii,1 =

lmax∪
l=1

I
(l)
i,1. Due to the partition, each slice I

(l)
i,1 is logarithmi-

cally separated from Ij,2 (see Figures 2.2 and 2.3). The numerical rank of A|
I
(l)
i,1×Ij,2

is

thus O(logm). Based on simple rank accumulation, the numerical rank of A|Ii,1×Ij,2

is O(log2 m). If Bi is at level l of T , m = O(Ml) following Lemma 3.1. The HSS rank
of Bi is then O(log2 Ml).

The HSS tree of Bi then serves as an inner-layer tree associated with node i of
T . If i is a leaf, the HSS trees of Di and Bi are related, which will be explained in
Remark 3.1 below.

3.3.2. Structures within the R generators. Next, we show the structures
within Ri and Rj . Let p = par(i). The parent domain is Ωp = Ωi ∪ Ωj . Due to the
lower level compression, the compression of A|Ωp×Ω̂p

reduces to the compression of

MHS STRUCTURES AND FACTORIZATIONS 13

A|(Ii∪Ij)×Ω̂p
. The SPRR factorization leads to

A|(Ii∪Ij)×Ω̂p
≈
(

Ri

Rj

)
A|Ip×Ω̂p

with(
Ri

Rj

)
= Πp

(
I
Ep

)
Ip
Îp

,(3.10)

where the identity matrix corresponds to the representative subset Ip from Ii ∪ Ij ,

and Ep corresponds to Îp = (Ii ∪ Ij)\Ip.
Similar to Figure 3.3, some boxes near the boundary of Ωi and Ωj become well

separated from Ω̂p. For convenience, we use Ĩp to denote the subset of points in Ii∪Ij
that are inside those boxes, and call Ĩp the compressible representative subset. See

Figure 3.6(a). Also, denote the representative subset of Ĩp with respect to Ω̂p by

(3.11) Īp = SPRR(̃Ip, Ω̂p),

so that

(3.12) Ip = ((Ii ∪ Ij)\Ĩp) ∪ Īp.

Then we have

(3.13) Îp = (Ii ∪ Ij)\Ip = Ĩp\Īp.

That is, to obtain Ip from Ii ∪ Ij , we replace Ĩp by its representative set Īp, and the

points that we drop form the complementary representative subset Îp.

(a) Compressible representative subset Ĩp (b) Ip
(marked as ⊗) in Ii ∪ Ij (with Ĩp replaced by Īp)

Fig. 3.6. Forming the representative subset Ip from Ii ∪ Ij by replacing the compressible rep-

resentative subset Ĩp by its own representative subset Īp.

The following lemma shows the cardinality of Īp and will be used later.
Lemma 3.3. Suppose |Ii ∪ Ij | = O(m). Then |̄Ip| = O(log2 m).

Proof. We prove this with the aid of the compressible representative subset Ĩp,
as shown in Figure 3.7. Just like in Figure 2.4, using a binary tree, we can organize
the points in Ĩp into O(log |̃Ip|) slices (see (2.5)):

(3.14) Ĩp =

lmax∪
l=1

Ĩ(l)p , lmax = O(log |̃Ip|).

14 JIANLIN XIA

Ip

~

Fig. 3.7. Tree organization of the compressible representative subset Ĩp in Ii ∪ Ij from Figure
3.6(a).

Since Īp ⊂ Ĩp as in (3.13), Īp can also be split into (at most) slices Ī
(l)
p . Within

each slice Ī
(l)
p , there are at most O(log |̃I(l)p |) points, since they are located within at

most O(log |̃I(l)p |) boxes that are well-separated from Ω̂p. (In another word, Ĩ
(l)
p is log-

arithmically separated from Ω̂p.) Thus, Īp includes at most O(log2 |̃Ip|) = O(log2 m)

points because |̃Ip| ≤ |Ii ∪ Ij | = O(m).
We then study the structure of Ep in (3.10). Supposem = |Ip|. The strong RRQR

factorization finds an m ×m submatrix of A|(Ii∪Ij)×Ω̂p
, denoted A|Ip×Jp (Jp ⊂ Ω̂p),

whose determinant is sufficiently large. That is, the selection of the representative
subset Ip returns an approximate column basis matrix for A|(Ii∪Ij)×Ω̂p

:

(3.15) Πp

(
I
Ep

)
A|Ip×Jp = Πp

(
A|Ip×Jp

EpA|Ip×Jp

)
,

which is also a submatrix of A|(Ii∪Ij)×Ω̂p
. Thus,

(3.16) EpA|Ip×Jp = A|̂Ip×Jp
.

To study the rank structure of Ep, we use the following lemma.
Lemma 3.4. Suppose m ×m matrices C and D satisfy σ1(C) > 0, σm(D) > 0,

and σ1(CD) > 0. Then for 1 ≤ r ≤ m,

σr(CD)

σ1(CD)
≤ κ2(D)

σr(C)

σ1(C)
,

where κ2(D) denotes the 2-norm condition number of D.
Proof. It is known that (see, e.g., [16]), for 1 ≤ s ≤ m,

max
1≤t≤m+s−1

σt(C)σm+s−t(D) ≤ σs(CD) ≤ min
1≤t≤s

σt(C)σs+1−t(D).

Setting s = t = 1 in the first inequality yields

σ1(CD) ≥ σ1(C)σm(D).

Setting s = t = r in the second inequality yields

σr(CD) ≤ σr(C)σ1(D).

The result then follows.
The rank structure of Ep is then given below.

MHS STRUCTURES AND FACTORIZATIONS 15

Theorem 3.5. Assume |Ip| = O(m), |Iq| = O(m). With the assumption in
Remark 2.1, Ep in (3.10) has numerical rank O(log2 m) with respect to the tolerance
τκ2(A|Ip×Jp). Therefore, if Ω is an M ×M uniform mesh, then for p at level l of

T , Ep has numerical rank O(log2 Ml) ≡ O
(
log2 M

2⌊l/2⌋

)
with respect to the tolerance

τκ2(A|Ip×Jp).

Proof. Notice Ĩp ⊂ Ωp and Jp ⊂ Ω̂p. As in the proof of Lemma 3.3, each slice

Ĩ
(l)
p in (3.14) is logarithmically separated from Ω̂p and also Jp. Thus, A|̃

I
(l)
p ×Jp

has

numerical rank O(logm) (with respect to the tolerance τ), and A|̃Ip×Jp
has numerical

rank O(log2 m). Accordingly, A|̂Ip×Jp
has numerical rank O(log2 m) since it is a

submatrix of A|̃Ip×Jp
. That is, for r = O(log2 m),

σr+1(A|̂Ip×Jp
)

σ1(A|̂Ip×Jp
)
≤ τ.

The matrix Ep from the strong RRQR factorization has the form in (3.16) or

Ep = A|̂Ip×Jp
(A|Ip×Jp)

−1.

According to Lemma 3.4,

σr+1(Ep)

σ1(Ep)
≤ κ2

(
(A|Ip×Jp)

−1
) σr+1(A|̂Ip×Jp

)

σ1(A|̂Ip×Jp
)

= κ2(A|Ip×Jp)
σr+1(A|̂Ip×Jp

)

σ1(A|̂Ip×Jp
)

≤ τκ2(A|Ip×Jp).

That is, Ep in (3.10) has numerical rank r = O(log2 m) with respect to the tolerance
τκ2(A|Ip×Jp).

This theorem indicates that, if the block A|Ip×Jp resulting from the strong RRQR
factorization is not too ill conditioned (which is the case if σr(A|(Ii∪Ij)×Ω̂p

) is not

significantly smaller than σ1(A|(Ii∪Ij)×Ω̂p
) [13]), then Ep in the representation (3.10)

for the R generators has numerical rank O(log2 m) with respect to a tolerance close
to τ .

We can also show the rank structures within A|Ip×Îp
, which will be useful in the

factorization stage.
Theorem 3.6. Suppose |Ip| = O(m), |̂Ip| = O(m). With the assumption in

Remark 2.1, A|Ip×Îp
has numerical rank O(log2 m).

Proof. After row permutations, we can rewrite A|Ip×Îp
as

(
A|(Ip\Īp)×Îp

A|̄Ip×Îp

)
.

A|(Ip\Īp)×Îp
is a submatrix of A|(Ip\Īp)×Ĩp

. For each slice Ĩ
(l)
p in (3.14), it is easy

to see that it is logarithmically separated from Ip\Īp, so that the numerical rank of
A|

(Ip\Īp)×Ĩ
(l)
p

is O(logm). The numerical ranks of A|(Ip\Īp)×Ĩp
and also A|(Ip\Īp)×Îp

are then O(log2 m).
According to Lemma 3.3, A|̄Ip×Îp

has row size at most O(log2 m). The result

then follows.

3.3.3. MHS representation. The discussions above indicate that A in (3.2)
can be approximated by an HSS form with structured generators. To systematically
take advantage of all these structures, we define the MHS representation as follows.

16 JIANLIN XIA

Definition 3.7. A multi-layer hierarchically semiseparable (MHS) matrix is
an HSS matrix whose generators are further HSS, MHS, or low-rank matrices. In
particular, a two-layer MHS matrix A with a corresponding MHS tree T is recursively
defined as follows. T includes two layers of postordered binary trees. The outer-layer
tree has nodes i = 1, 2, . . . , k, where k is the root. Each node i is associated with
HSS generators Di, Ui, Vi, Ri,Wi, Bi. Furthermore, the generators are structured as
described below:

1. all the generators Di associated with leaves i of T are in HSS forms;
2. all the Bi generators associated with node i ̸= k of T are in HSS forms;
3. all the R,W generators used to construct the generators Ui, Vi associated

with nonleaf nodes i ̸= k of T as in (3.1) are in the forms of

(
Rc1

Rc2

)
=

Πi

(
I
Ei

)
and

(
Wc1

Wc2

)
= Θi

(
I
Fi

)
, respectively, where c1 and c2 are

the children of i, Πi and Θi are permutation matrices, and Ei and Fi are
low-rank matrices.

Each node i of T is associated with an inner-layer HSS tree for the Di or Bi

generator. All the inner-layer HSS generators and the low-rank forms of Ei and Fi

are called the MHS generators. The outer-layer HSS rank is the HSS rank of A when
A is considered as an HSS matrix, and the MHS rank of A is the maximum of the
HSS ranks of all the leaf level Di generators, of the HSS ranks of all the Bi generators,
and of the ranks of all Ei, Fi.

Remark 3.1. We make some remarks on certain practical issues about the
generators in the definition.

1. Permutations may also be involved in the leaf level Di generators and the
Bi generators in order for them to have HSS forms. This is to accommodate
possible reordering of the corresponding representative points. The permu-
tations do not interfere with the off-diagonal rank structures, since the U, V
basis matrices also involve permutations.

2. The Bi generators may be non-square matrices. (In [7], when HSS approxi-
mations are used for integral equation solution, B is restricted to be square.)
Following the factorization process and Remark 4.1 in Section 4 below, it
makes sense to store the following matrix as a square HSS matrix instead:

ΠT
p

(
Di Bi

Bj Dj

)
Θp,

where j = sib(i), p = par(i).
3. For a leaf i, there is no restriction on the structure of the Ui, Vi generators,

which are formed based on the generators associated with the inner HSS
generators of Di.

Thus, a two-layer MHS structure is an outer-layer HSS structure with an extra
inner layer of HSS or low-rank structures. This is also called an HSS2D structure in
the report [30]. See Figure 3.8 for an illustration. Here by an MHS structure, we
usual mean the two-layer one. For notational consistency, suppose the MHS tree has
ls outer levels, with the root at level 0. When we say a node of T is at level l, we
mean the outer level l.

The storage of A can be counted as follows. Let N be its size, r̃ be its outer HSS
rank, and r be its MHS rank. Each HSS form Di or Bi generator has size O(r̃) and
needs storage O(rr̃). The storage is similar for each structured Ri or Wi generator.

MHS STRUCTURES AND FACTORIZATIONS 17

1 2

3

4 5

()R2

R1

D1
U1

B1

......

......

B3

((
U1

U2

((
((

......

......

D2

D4

......

......

D5

((
((

((
((((((

((
(a) MHS tree (b) MHS structure

Fig. 3.8. An MHS matrix corresponding to a two-layer MHS tree, where the inner layer trees
in (a) are for the structured D,B generators.

The outer HSS tree has O(Nr̃) nodes. Thus, the total storage is

σ = O(rr̃ · N
r̃
) = O(rN).

When A is used to approximate A in (3.2) with Ω an M ×M uniform mesh, we have
r = O(log2 N) according to Theorems 3.2 and 3.5 above. Thus, σ = O(N log2 N).

However, this overestimates since the rank structures associated with nodes at
different levels l are different. Similar to the rank patterns in [27], we can take into
consideration the different levels and improve the storage estimate. According to
Lemma 3.1, the outer off-diagonal ranks depending on l as r̃l in (3.7). Thus, the sizes
of Di, Ri,Wi, Bi, etc. depend on l. Each leaf level Di generator has size O(M2

ls
),

and Lemma 3.1 further means that the storage of Di is O(M2
ls
logMls) [27]. The leaf

level Ui, Vi generators needs no extra storage due to the third item in Remark 3.1.
The Ri,Wi, Bi generators at level l have sizes O(Ml) and need storage O(Ml log

2 Ml)
based on Theorems 3.2 and 3.5. Thus, the total storage for the MHS matrix is

σ = 2lsO(M2
ls logMls) +

ls∑
l=1

2lO
(
Ml log

2 Ml

)
= O(M2 logMls) +

ls∑
l=1

2lO

(
M

2⌊l/2⌋
log2

M

2⌊l/2⌋

)

= O(M2 logMls) +

⌊ls/2⌋∑
l̂=0

2l̂O(M(logM − l̂)2).

Based on the formula
∑k

l̂=0 2
l̂(n − l̂)2 ≈ 2k+1(n − k)2 (where some low-order terms

are dropped for sufficiently large n and k), we have

σ = O(M2 logMls) +O(M2⌊ls/2⌋(logM − ⌊ls/2⌋)2

= O(M2 logMls) +O

(
M2

Mls

(logM − ⌊ls/2⌋)2
)
.

18 JIANLIN XIA

In the ideal situation, when ⌊ls/2⌋ ≈ logM and Mls = O(1), we get σ = O(M2).
However, since the rank estimates and the flop counts are asymptotic, this may not
actually hold. A more realistic estimate is for Mls to depend on M as

(3.17) Mls(≈M/2⌊ls/2⌋) = O(logM).

In this case, σ = O(M2 log logM). This also means

(3.18) ls ≈ 2 logM −O(log logM),

and the leaf level Di generators have O(log logM) levels in their inner HSS trees. If
Mls = O(

√
M), then

σ = O(M2 logM) = O(N logN).

In practical implementations, this is a more realistic estimate.

4. MHS algorithms and MULV factorizations. Due to the multi-layer
structure, it is convenient to reuse some basic ideas and algorithms in HSS methods
to design MHS algorithms such as construction, factorization, solution, and multi-
plication. We mainly focus on the factorization of an MHS approximation A to the
matrix A in (3.2), and briefly mention other algorithms.

4.1. MHS constructions. One MHS construction strategy is based on the ker-
nel expansion in (2.2). We first construct the outer-layer representation following the
derivation procedure in Section 3 and then explore the inner-layer structures. Ini-
tially, evaluate the functions f and g in (2.2) at all the points in Ω. We may also
integrate the stabilization strategies in [5] for the purpose of stability.

Then for a leaf i of T , find a numerical column basis Ũi for A|Ωi×Ω̂i
based on the

kernel expansion. Ũi is then converted into the generator Ui in a form like in (2.3).
This enables us to identify the representative subset Ii.

For a nonleaf node p with children i and j, we find a numerical column basis

Ũp for

(
A|Ii×Ω̂p

A|Ij×Ω̂p

)
. As mentioned in Section 3.3.2, this only needs to be done on

A|̃Ip×Ω̂p
. The representative subset selection (3.11) yields Īp and then Ip in (3.12).

The representative subset selection also gives Ep in (3.15).
Next, we find the inner structures. For a leaf i, the kernel expansion or direct

off-diagonal compression can be used to find an HSS approximation to Di. Since
Bi ≡ A|Ii×Ij , the kernel expansion can be used to find an HSS approximation to Bi

[5]. We then compute a low-rank approximation to Ep based on (3.16). That is, we
can write an HSS approximation to A|Ip×Jp

and a low-rank approximation to A|̂Ip×Jp
,

and then obtain Ep via HSS solutions:

Ep = (A|Ip×Jp)
−1A|̂Ip×Jp

.

Clearly, writing the outer-layer HSS approximation only costs O(M2 logM) =
O(N logN) flops, following the rank pattern in Lemma 3.1. While it costs O(M3) =
O(N3/2) flops to find the inner-layer structures. On the other hand, for certain
situations [7, 21], it is be possible to analytically identify the representative subsets,
so as to reduce the total cost to O(N logN) or even less. In such cases, potential
theories can greatly benefit the compression.

MHS STRUCTURES AND FACTORIZATIONS 19

Algebraic MHS construction strategies can also be proposed, and are our primary
interest. A straightforward HSS construction from the dense matrix A would cost
O(N2). A faster way is to use a randomized HSS construction in [20, 36] together with
FMM for matrix-vector multiplications. Due to the rank pattern in Lemma 3.1, the
complexity is O(N3/2) [27]. Although this complexity is not optimal, the construction
is simpler than the analytical ones and the performance is still competitive in practice.
In addition, if MHS approximation is used to handle intermediate dense fill-in in
the factorization of sparse discretized elliptic problems on 3D domains, the O(N3/2)
complexity is sufficient to ensure a roughly linear complexity for the overall sparse
factorization [28].

It is still an open problem to construct MHS approximations to problems with
small MHS ranks in nearly O(N) complexity using only algebraic techniques. On the
other hand, for problems with small HSS ranks and fast matrix-vector multiplications,
randomized HSS construction can reach nearly linear complexity [18, 20, 36].

4.2. Multi-layer ULV (MULV) factorization. A major significance of the
MHS structure is the fast factorization. The factorization of an MHS form is very
convenient based on HSS ULV factorizations [6, 33]. Multiple layers of ULV factor-
izations will be involved. Thus, we call the MHS factorization a multi-layer ULV or
MULV factorization.

Recall that the basic idea of HSS ULV factorizations is the hierarchical reduction
of an HSS matrix into smaller reduced HSS matrices [33, 28]. In particular, for one
version of ULV factorization [36], due to the structured basis matrices as in (2.3),
the reduced matrices eventually correspond to the representative subsets selected in
SPRR factorizations. Thus, the factorization can be intuitively illustrated in terms of
the representative subsets. The basic idea is introduced in [36, 29] and also appears
in [15]. Here, we improve the idea by incorporating an additional layer of structures.
Furthermore, we can even relate the MULV factorization to sparse multifrontal type
factorizations that also involve hierarchical tree operations. The nice stability and
scalability of MHS factorizations can thus be easily seen. These are explained in detail
below. Suppose A is an MHS approximation to A with generators as in Definition
3.7. Since A here is symmetric, the V,W generators are same as the U,R generators,
respectively, and the MULV factorization below is a symmetric one. It can be easily
modified to get a nonsymmetric version.

4.2.1. Outer factorization framework. In order to facilitate the inner-layer
structured operations, the MHS factorization uses an outer factorization framework
based on a ULV factorization modified from [36]. We first explain the fundamental
operations in terms of representative subsets, and then discuss the inner-layer compu-
tations in the next subsection. One fundamental operation is to introduce zeros into
the off-diagonal blocks via the introduction of zeros into the column basis matrices.
Due to the form of a basis matrix like in (3.3), (3.4), and (3.10), a strategy is pro-
posed in [36] to introduce zeros without any cost. Here, we use a modified form. For

example, consider a basis matrix Πi

(
I
Ei

)
Ii
Îi

associated with a leaf node i, where

the index sets are marked and Ii is the representative subset within Ωi. Let

(4.1) Pi =
Îi
Ii

(
I
−Ei I

)
ΠT

i .

20 JIANLIN XIA

Then

(4.2) PiΠi

(
I
Ei

)
=

Îi
Ii

(
I
0

)
.

This process is done analytically and no actual operation is performed. Pi here is
different from the one [36], and the reason is that we can write it as the following
form that will be convenient for our inner structured operations later:

Pi = (I + Ẽi)Π
T
i .

Another way to see the benefit is that I + Ẽi is an HSS form when Ei in (4.1) has an
inner low-rank structure. Pi is thus a permuted HSS matrix.

Accordingly, the diagonal generator Di needs to be updated. For later notation
consistency, let D̂i ≡ Di. Multiply Pi to D̂i on the left and PT on the right:

(4.3) D̃i = PiD̂iP
T
i = (I + Ẽi)(Π

T
i D̂iΠi)(I + ẼT

i).

Due to the permutation, ΠT
i D̂iΠi may be partitioned as

(4.4) ΠT
i D̂iΠi ≡

(
A|Ii×Ii A|Ii×Îi
A|T

Ii×Îi
A|̂Ii×Îi

)
.

Then we get
(4.5)

D̃i = ΠT
i D̂iΠi+Ẽi(Π

T
i D̂iΠi)+(ΠT

i D̂iΠi)Ẽ
T
i +Ẽi(Π

T
i D̂iΠi)Ẽ

T
i ≡

(
D̃i;1,1 D̃i;1,2

D̃T
i;1,2 D̃i;2,2

)
,

where

D̃i;1,1 = A|Ii×Ii ,(4.6)

D̃i;1,2 = A|Ii×Îi
−A|Ii×IiE

T
i ,

D̃i;2,2 = A|̂Ii×Îi
− EiA|Ii×Îi

−A|T
Ii×Îi

ET
i + EiA|Ii×IiE

T
i .

The second fundamental operation is to partially eliminate the diagonal block.
Treat the (2, 2) block D̃i;2,2 as the pivot block and compute a partial UDU factoriza-
tion (which is a variation of the partial LDL factorization)

(4.7) D̃i =

(
I L̃i;1,2

L̃i;2,2

)(
Si

Λi

)(
I

L̃T
i;1,2 L̃T

i;2,2

)
,

where Si is the Schur complement of the (2, 2) block:

(4.8) Si = D̃i;1,1 − D̃i;1,2D̃
−1
i;2,2D̃

T
i;1,2 = A|Ii×Ii − D̃i;1,2D̃

−1
i;2,2D̃

T
i;1,2.

The pivot block D̃i;2,2 can then be eliminated, which clearly corresponds to the re-

moval of the complementary representative subset Îi from the domain, so that only
the representative subset Ii remains.

The next operation is to merge blocks and form a reduced matrix. Let p = par(i)
and j = sib(i), and

(4.9) D̂p ≡
Ii
Ij

(
Si Bi

BT
i Sj

)
, Ûp =

Ii
Ij

(
Ri

Rj

)
,

where the index sets marked for the blocks of D̂p are due to (4.6), (4.8), and (3.8).
Then we can remove i and j from the tree, so that p becomes a leaf with new generators
D̂p, Ûp. Then the above process can be repeated on p. Every time a node is eliminated,
we get a reduced HSS matrix.

MHS STRUCTURES AND FACTORIZATIONS 21

4.2.2. Inner structured computations. In the MULV factorization, the com-
putations in the outer ULV factorization above are performed in structured forms.

1. Since Ei in (4.1) is low rank (see Section 3.3.2), so does Ẽi in (4.5). According
to the discussions below, ΠT

i D̂iΠi in (4.4) has an HSS approximation, so that
D̃i in (4.5) also has an HSS approximation and can be computed via a low-
rank update of the HSS form of ΠT

i D̂iΠi.
2. Then the partial diagonal factorization (4.7) is replaced by a partial ULV fac-

torization. Different versions in [29, 33] may be used. The Schur complement
Si in (4.8) is also an HSS form, and its generators can be obtained from the
update of those of D̃i;1,1. Notice that an essential property of the ULV Schur

complement computation is that Si and D̃i;1,1 share the same off-diagonal
basis generators, so that the HSS rank of Si is bounded by the HSS rank of
D̃i (see [33, 29]). This is important to preserve the inner-layer structures.
Thus, the partial factorization looks like

D̃i;2,2 = L̃i;2,2ΛiL̃
T
i;2,2 — HSS ULV factorization,(4.10)

Si = D̃i;1,1 − D̃i;1,2D̃
−1
i;2,2D̃

T
i;1,2 — partial generator update.(4.11)

The update D̃i;1,2D̃
−1
i;2,2D̃

T
i;1,2 is not explicitly formed. Instead, a reduced HSS

matrix [28, 33] resulting from the ULV factorization of D̃i;2,2 is used for the
quick update. This needs no HSS inversion or recompression.

3. In the merge step (4.9), the subblocks of D̂p are then all approximated by

HSS forms. We can show that ΠT
p D̂pΠp itself also has an HSS approximation.

According to (4.8), Si is A|Ii×Ii plus a low-rank update. A similar situation
holds for Sj . Also, notice (3.8). Thus,

D̃p ≡ ΠT
p D̂pΠp(4.12)

= A|(Ip∪Îp)×(Ip∪Îp)
−ΠT

p

(
D̃i;1,2D̃

−1
i;2,2D̃

T
i;1,2

D̃j;1,2D̃
−1
j;2,2D̃

T
j;1,2

)
Πp.

Based on Theorem 3.6 and similarly to the study of the structures of the
B generators in Section 3.3, A|(Ip∪Îp)×(Ip∪Îp)

can be approximated by an

HSS form. Thus, ΠT
p D̂pΠp can also be approximated by an HSS form after

a low-rank update. This means that we can proceed with the structured
factorization of D̃p with i replaced by p in (4.5). Note that (4.12) is only used

to show the HSS structure of ΠT
p D̂pΠp, and is not used in actual computations

due to the second statement above.
When the nodes at a level are eliminated, we get a reduced MHS matrix. Let

A(ls) ≡ A, and let A(l−1) be the reduced matrix resulting from the elimination of the
nodes at level l of A(l). Within a reduced MHS matrix, a leaf level diagonal generator
D̂i has an HSS form when it is permuted as ΠT

i D̂iΠi. All the other generators of
the reduced MHS matrix come from the original generators of A. In the elimination
process, due to (4.3), the HSS rank of Si may be higher than that of A|Ii×Ii . When
the factorization proceeds to p at upper levels, algebraically, it is possible for the
HSS rank of ΠT

p D̂pΠp to slightly grow. This growth is expected to be proportional
to a low-degree power of ls − l for p at level l. This is similar to the off-diagonal
rank behavior of A|(Ip∪Îp)×(Ip∪Îp)

. Numerical tests confirm the slow growth, though

a rigorous derivation of the actual growth pattern is not available yet.

22 JIANLIN XIA

Remark 4.1. There are some practical issues to pay attention to. Since Πp

results from an RRQR factorization, it only separates Ii ∪ Ij into sets Ip and Îp,

but does not guarantee that Ip and Îp are properly ordered as needed for the HSS
approximation of A|(Ip∪Îp)×(Ip∪Îp)

. Thus, in practice, we also reorder the sets Ip and

Îp following the geometric connectivity in the mesh so as to ensure the HSS structure.
This does not affect the matrix representation. For convenience, we assume Πp also
includes such internal reordering. Thus, to be more specific, the structure within the
B generators appear as part of the HSS form of

(4.13) D̃p = ΠT
p D̂pΠp = ΠT

p

(
Si Bi

BT
i Sj

)
Πp.

If i and j are leaf nodes, the storage of Di, Dj , Bi can be similarly based on the matrix

ΠT
p

(
Di Bi

BT
i Dj

)
Πp as an HSS form. In the actual implementation, for simplicity,

the internal ordering for Ip and Îp may be obtained with the reverse Cuthill-McKee
(RCM) method.

4.2.3. Overall MULV factorization algorithm and properties. The entire
MULV factorization recursively produces the reduced MHS matrices A(l), l = ls −
1, . . . , 1, 0. The elimination of the nodes i at one level l corresponds to the removal of
all the complementary representative subsets Îi at level l. Thus, Figures 3.3 and 3.4
can naturally also be used to illustrate this factorization process. For example, we
start from A and the domain Ω. After eliminating the complementary representative
subsets at level ls, we obtain the reduced matrix A(ls−1) corresponding to the mesh
like in Figure 4.1(a). Another level of elimination yields Figure 4.1(b). By continuing
this, we get the meshes in Figures 3.4(a–b). Notice that the final reduced matrix A(0)

is a standard HSS matrix, and a regular HSS ULV factorization can be applied. Thus,
the factorization process also corresponds to the recursive sparsification of the mesh
and dimension reduction for A.

(a) Eliminating complementary representative (b) Eliminating another level

subsets at the bottom levels

Fig. 4.1. Illustration of the MHS ULV (MULV) factorization process with the aid of represen-
tative subsets.

See Algorithm 1 for a sketch of the factorization scheme. The design of the MHS
framework makes it very convenient to organize and understand the scheme despite
the large amount of technical and implementation details.

MHS STRUCTURES AND FACTORIZATIONS 23

Algorithm 1 MULV factorization of an MHS matrix

1: procedure MULV
2: for node i = 1, 2, . . . , root(T) do
3: if i is a leaf then
4: D̂i ← Di ◃ Leaf level inner HSS form
5: else

6: D̂i ←
(

Sc1 Bc1

BT
c1 Sc2

)
◃ Merging child level HSS contributions

7: end if
8: if i < root(T) then
9: D̃i ← (I + Ẽi)(Π

T
i D̂iΠi)(I + ẼT

i)◃ HSS construction (e.g., randomized
construction via fast multiplication of this matrix and vectors)

10: Compute partial ULV factorization of D̃i as in (4.10)–(4.11)
11: Si ← HSS form Schur complement
12: else ◃ Root node
13: Πi ← permutation of Ii based on connectivity
14: D̃i ← ΠT

i D̂iΠi ◃ HSS construction
15: Compute ULV factorization of D̃i

16: end if
17: end for
18: end procedure

Remark 4.2. It can be observed that this MULV factorization is very sim-
ilar to the structured multifrontal methods in [28, 29, 32] for sparse factorizations.
The representative subsets can be regarded as (generalized) separators in nested dis-
section. The outer ULV factorization is similar to the multifrontal framework, and
the inner ULV factorization corresponds to the intermediate ULV factorizations in
the structured multifrontal methods. The matrices Si in (4.8) and D̃p in (4.13) play
roles similar to the update matrix and frontal matrix in the multifrontal method,
respectively. The merging step (4.9) and the permutation ΠT

p D̂pΠp are similar to the
extend-add operation in the multifrontal method. All such intrinsic connections are
valuable in the sense that they enable us to share ideas among different types of hier-
archical methods. For example, instead of keeping explicit Si, we may use randomized
method as in the randomized multifrontal method in [29] so as to pass skinny matrix-
vector products instead of Si itself in the communication with the parent node. In
addition, we may then also directly apply MHS methods to some sparse problems.
More details on exploiting such connections will appear in future work [31].

The design of the MHS structure also makes it very convenient to analyze the
MHS methods. For example, we can show the complexity of the factorization similarly
to HSS complexity studies.

Theorem 4.1. Suppose A is an N×N MHS matrix with MHS rank r, where the
Ri, Bi generators at level l have sizes O(Ml) = O(M

2⌊l/2⌋
) with M = N1/2, and the leaf

level Di generators have sizes O(M2
ls
) for Mls in (3.17) and ls in (3.18). If all the

matrices D̃i in Algorithm 1 have HSS ranks O(r), then the complexity of Algorithm
1 is O(r2N), and the storage for the factors is O(rN).

Proof. The structured operations associated with a node at level l cost at most

24 JIANLIN XIA

O(r2Ml) flops. Thus from (3.17), the total MULV factorization cost is

ξfact = 2lsO(r2M2
ls) +

ls∑
l=1

2lO
(
r2Ml

)
= 2lsO(r2 log2 M) +

ls∑
l=1

2lO

(
r2M

2⌊l/2⌋

)

= O(r2M2) +

⌊ls/2⌋∑
l̂=0

2l̂O(r2M) = O(r2M2) = O(r2N).

The storage can be similarly estimated.

Remark 4.3. In the ideal situation, when r = O(1), the complexity is then
linear in N . In practice, r is likely also proportional to a low-degree power of logM ,
so that the total factorization cost is proportional to N times a polylogarithmic term
of N . To simplify the implementation, we may also keep Si in a dense form. The
total factorization cost would then be increased by a factor that is a polylogarithmic
term of N .

Similarly, we can show the stability of the MHS factorization by recursively using
the HSS stability analysis in [24, 25]. The details are expected to appear in [28]. The
factorization is also fully scalable in the sense that all the operations at the same
hierarchical level in each layer can be performed simultaneously.

4.3. Other algorithms. We can similarly design an MHS solution algorithm
based on the MULV factors. Again, this follows an outer layer HSS ULV solution
scheme [36, 33], with inner operations performed in structured forms. The solution
cost is O(rN) following the assumptions in Theorem 4.1. MHS matrix-vector and
matrix-matrix multiplication schemes can also be conveniently designed based on the
corresponding HSS algorithms in [6, 19].

We may also develop an MHS selected inversion method to computed the diagonal
blocks of the inverse. Following Remark 4.2, this is very similar to the selected
inversion method in [35] that is based on an outer multifrontal inversion with inner
HSS operations.

5. Numerical experiments. To verify the effectiveness of MHS structures and
the efficiency of MHS factorizations, we solver the linear system

(5.1) Ax = b,

where A is a discretized matrix as in (3.2). We report some rank bounds to show the
feasibility of MHS approximations, and then demonstrate the performance of MHS
factorizations by reporting the factorization and solution costs, storage, and solution
accuracies. The following measurements are used.

• r̃: (outer) HSS rank when A is approximated by an HSS form;
• r̃D̃: maximum size of all the matrices D̃p as in (4.13) in the ULV factorization
when A is approximated by an HSS form;
• r: MHS rank;
• rD̃: maximum of the inner HSS ranks of all the matrices D̃p as in (4.13),
which measures the intermediate rank structures in the MULV factorization;
• ξfact: factorization flop count;
• ξsol: solution flop count;
• σ: storage for the structured matrix approximation in terms of the number
of nonzeros;

MHS STRUCTURES AND FACTORIZATIONS 25

• ∥Ax̃−b∥2

∥|A|·|x|+|b|∥2
: relative residual, where x̃ is the numerical solution and b is

generated with the exact solution x set to be random;

• ∥x−x̃∥2

∥x∥2
: relative accuracy.

In practice, we use appropriate sizes of the resulting compressed forms for the
rank measurements. For example, if E is approximated by a compressed form GHT ,
the column size of G is used as the rank measurement for E. Also, simplifications
as in Remarks 4.1 and 4.3 are used in the implementation. Two types of discretized
functions ϕ in (3.2) are considered in two examples.

Example 1. First, consider ϕ to be the 2D Laplace free-space Green’s function
and

Aij =

{
1, i = j,

h2

2π log |yi − yj |, i ̸= j,

where yj ’s are points on a uniform grid in the domain [−1, 1]× [−1, 1] with M points
in each direction.

We inspect whether A can be approximated by compact MHS forms for a given
tolerance. More specifically, we look at the inner structures within an outer HSS
approximation to A, as discussed in Section 3.3. Accordingly, to show the advantage
of MHS structures over HSS structures, we also show the performance when A is
directly approximated by an HSS form (which is the outer layer HSS form of the
MHS approximation). A relative tolerance 10−6 is used for all the compression steps.
The matrix size N = M2 ranges from 1282 to 20482. The number of outer HSS levels
ls varies accordingly.

As shown in Table 5.1, when the mesh dimension M doubles, the HSS rank r̃
roughly doubles, while the MHS rank r remains about the same. For N = 20482, r
is almost 40 times as small as r̃. Similarly, r̃D̃ roughly doubles, while rD̃ only slowly
increases. This confirms the feasibility of MHS approximations for the problem.

Table 5.1
Example 1. Rank structures of the MHS approximation and MULV factorization as compared

with those of the HSS approximation and ULV factorization, respectively.

N 1282 2562 5122 10242 20482

ls 6 8 10 12 14

HSS
r̃ 247 472 898 1710 3302

r̃D̃ 496 945 1804 3443 6626

MHS
r 80 80 80 83 84

rD̃ 80 109 139 169 189

Table 5.2 compares the performance of HSS ULV factorization and MULV fac-
torization. To show the asymptotic complexity of the MULV factorization, we also
plot ξfact in Figure 5.1(a). It indicates that the MULV factorization roughly follows
the O(N log2 N) complexity. On the other hand, the HSS ULV factorization costs
O(N1.5) [27] based on Lemma 3.1. As discussed in [27], the HSS method is still very
competitive in terms of the solution cost. Both MHS and HSS factorizations have
nearly O(N) solution costs. Still, the MHS solution cost grows slower with N . See
Figure 5.1(b). The storage for the MHS and HSS matrices is given in Figure 5.1(c).
The accuracies of the MHS solution is given in Table 5.3.

26 JIANLIN XIA

Table 5.2
Example 1. Costs and storage of the MHS and HSS methods.

N 1282 2562 5122 10242 20482

HSS

ξfact 3.81e09 2.72e10 1.97e11 1.35e12 9.64e12

ξsol 2.24e07 1.09e08 5.18e08 2.30e09 1.01e10

σ 5.60e06 2.74e07 1.30e08 5.76e08 2.53e09

MHS

ξfact 5.37e09 2.87e10 1.48e11 7.39e11 3.50e12

ξsol 3.20e07 1.42e08 6.07e08 2.55e09 1.04e10

σ 6.35e06 2.69e07 1.12e08 4.45e08 1.78e09

N
105 106

1011

1012

1013

HSS factorization
MHS factorization

O(N1.5) reference line

O(N*log2N) reference line

N
105 106

108

109

1010 HSS solution
MHS solution
O(N*log(N)) reference line
O(N) reference line

(a) Factorization flops ξfact (b) Solution flops ξsol

N
105 106

108

109

HSS
MHS
O(N*log(N)) reference line
O(N) reference line

(c) Matrix storage σ

Fig. 5.1. Example 1. Costs and storage of the MHS method as compared with the HSS method.

Example 2. Then we replace ϕ in the previous example by the 3D Laplace free-
space Green’s function, and the matrix A is given by

Aij =

{
1, i = j,

−h2

4π
1

|yi−yj | , i ̸= j.

In this case, unlike the previous example where representative points cluster near
the boundaries of a domain [7], the SPRR factorization yields representative points
that may also be away from the boundaries. This can be observed from Figure 5.2.
See Figure 5.3 for the collection of representative subsets for all the nodes at each
level. They correspond to a reduced MHS matrix. This is consistent with Figure

MHS STRUCTURES AND FACTORIZATIONS 27

Table 5.3
Example 1. Accuracies of the MHS solution.

N 1282 2562 5122 10242 20482

∥x−x̃∥2

∥x∥2
4.13e− 6 6.98e− 6 5.76e− 6 1.79e− 5 1.42e− 5

∥Ax̃−b∥2

∥|A|·|x|+|b|∥2
1.87e− 6 2.94e− 6 2.51e− 6 7.92e− 6 6.25e− 6

4.1 and clearly shows how the complimentary representative subsets Îi at each level
are eliminated and the mesh is sparsified. Note that in the MULV factorization,
the elimination of Îi is also done through a ULV factorization, so a similar inner
sparsification process is involved.

(a) Ii (b) Ij (c) Ii ∪ Ij (d) Ip

Fig. 5.2. Example 2. Some examples of representative subsets in a mesh (zoomed in), and the
selection of Ip from lower level representative subsets Ii and Ij , where j = sib(i), p = par(i).

(a) l = 3 (b) l = 2 (c) l = 1 (d) l = 0

Fig. 5.3. Example 2. Collection of representative subsets at each level l corresponding to a
reduced MHS matrix, where the mesh is 128× 128.

The rank structures are reported in Table 5.4. Although the MHS ranks in this
case are higher than in the previous case, they are still much smaller than the outer
HSS ranks. Note that the ordering of the representative points impacts the measured
MHS ranks, as mentioned in Remark 4.1. On the other hand, the rank structure of
the Ep matrices in Theorem 3.5 do not depend on any ordering. Thus, we also report
the maximum of the numerical ranks of the Ep matrices for all the nodes p of T ,
denoted rE . This bound is a more precise measurement of the intrinsic structures
within the off-diagonal basis generators. rE is quite smaller than r in Table 5.4.

The costs and storage of the MULV method are given in Table 5.5. Due to the
higher MHS ranks than in the previous example, it needs N to be much larger to see
a significant advantage over the HSS method. However, the asymptotic complexities

28 JIANLIN XIA

Table 5.4
Example 2. Rank structures of the MHS approximation and MULV factorization as compared

with those of the HSS approximation and ULV factorization, respectively.

N 1282 2562 5122 10242 20482

ls 6 8 10 12 14

HSS
r̃ 377 743 1471 2932 5893

r̃D̃ 755 1491 2948 5882 11836

MHS

rE 99 114 131 139 152

r 99 136 201 384 510

rD̃ 159 274 354 483 647

of the MHS method can already be observed from Figure 5.4. According to Theorems
3.2, 3.5, and 4.1, the MULV factorization cost is expected to be around O(N log4 N),
as verified by Figure 5.4(a). Similar asymptotic behaviors can be observed for the
solution cost and storage.

Table 5.5
Example 2. Costs and storage of the MHS and HSS methods.

N 1282 2562 5122 10242 20482

HSS

ξfact 9.06e09 8.36e10 7.30e11 6.21e12 5.21e13

ξsol 4.40e07 1.88e08 9.79e08 4.89e09 2.38e10

σ 8.50e06 4.70e07 2.45e08 1.22e09 5.95e09

MHS

ξfact 1.63e10 1.25e11 8.73e11 5.83e12 3.73e13

ξsol 5.97e07 2.98e08 1.37e09 6.00e09 2.48e10

σ 1.06e07 4.84e07 2.09e08 8.74e08 3.58e09

Table 5.6
Example 2. Accuracies of the MHS solution.

N 1282 2562 5122 10242 20482

∥x−x̃∥2

∥x∥2
5.69e− 5 7.34e− 5 2.23e− 4 3.33e− 4 9.98e− 4

∥Ax̃−b∥2

∥|A|·|x|+|b|∥2
2.30e− 5 2.74e− 5 8.90e− 5 9.60e− 5 4.20e− 4

6. Conclusions. In this work, we design MHS structures and propose MHS fac-
torizations. The MHS structure extends the HSS structure to multiple dimensions by
recursively incorporating HSS and low-rank structures into the generators of outer-
layer HSS forms. Based on FMM and algebraic methods for selecting representative
points, we have shown the existence of MHS structures within the approximation of
some multi-dimensional discretized dense matrices. The multi-layer design makes it
convenient to explore multi-dimensional FMM structures by taking advantage of ex-
isting HSS algorithms and analysis. In particular, the MULV factorization integrates
multiple hierarchical ULV factorizations, which also has a strong connection to hi-
erarchical sparse factorizations. This provides a great potential to unify dense and
sparse structured factorization methods. The factorization is fully stable and scal-
able, and has nearly linear complexity. The work provides a proof-of-concept study

MHS STRUCTURES AND FACTORIZATIONS 29

N
105 106

1011

1012

1013

MHS factorization

O(N*log4N) reference line

N
105 106

108

109

1010

MHS solution
O(N*log(N)) reference line

(a) Factorization flops ξfact (b) Solution flops ξsol

N
105 106

108

109

MHS
O(N*log(N)) reference line

(c) Matrix storage σ

Fig. 5.4. Example 2. Costs and storage of the MHS method.

for multi-layer hierarchical structures. The MHS structure in two dimensions can
be used approximate some 2D discretized integral equations or dense Schur comple-
ments in some 3D discretized PDEs, which can lead to direct solvers with nearly linear
complexity. Further optimization of the practical ordering strategies for the repre-
sentative points is expected to be done. Efficient implementations will be developed
for the purpose of large-scale dense and sparse direct solutions for multi-dimensional
problems.

REFERENCES

[1] A. Aminfar, S. Ambikasaran, E. Darve, A fast block low-rank dense solver with applications
to finite-element matrices, J. Comp. Phys., 304 (2016), pp. 170–188.

[2] R. Beatson and L. Greengard, A Short Course on Fast Multipole Methods, In M. Ainsworth,
& al (Eds.), Wavelets, multilevel methods, and elliptic PDEs, pp. 1–37, (Numerical Math-
ematics and Scientific Computation.) Oxford University Press.

[3] S. Börm, L. Grasedyck, and W. Hackbusch, Introduction to hierarchical matrices with
applications, Eng. Anal. Bound. Elem, 27 (2003), pp. 405–422.

[4] S. Börm and W. Hackbusch, Data-sparse approximation by adaptive H2-matrices, Comput-
ing, 69 (2002), pp. 1–35.

[5] D. Cai and J. Xia, Bridging the gap between the fast multipole method and HSS structures,
Purdue GMIG Report 15-15, April 2015.

[6] S. Chandrasekaran, P. Dewilde, M. Gu, and T. Pals, A fast ULV decomposition solver
for hierarchically semiseparable representations, SIAM J. Matrix Anal. Appl., 28 (2006),
pp. 603–622.

[7] E. Corona, P. G. Martinsson, and D. Zorin, An O(N) direct solver for integral equations

30 JIANLIN XIA

in the plane, Appl. Comput. Harmon. Anal. 38 (2015), pp. 284–317.
[8] I. S. Duff and J. K. Reid, The multifrontal solution of indefinite sparse symmetric linear

equations, ACM Bans. Math. Software, 9 (1983), pp. 302–325.
[9] J. A. George, Nested dissection of a regular finite element mesh, SIAM J. Numer. Anal., 10

(1973), pp. 345–363.
[10] A. Gillman, P. Young, and P. G. Martinsson, A direct solver with O(N) complexity for

integral equations on one-dimensional domains, Front. Math. China, 7 (2012), pp. 217–247.
[11] L. Grasedyck, R. Kriemann, and S. Le Borne, Domain decomposition based H-LU precon-

ditioning, Numer. Math., 112 (2009), pp. 565–600.
[12] L. Greengard and V. Rokhlin, A fast algorithm for particle simulations, J. Comp. Phys.,

73 (1987), pp. 325–348.
[13] M. Gu and S. C. Eisenstat, Efficient algorithms for computing a strong-rank revealing QR

factorization, SIAM J. Sci. Comput., 17 (1996), pp. 848–869.
[14] N. Halko, P. G. Martinsson, and J. Tropp, Finding structure with randomness: Proba-

bilistic algorithms for constructing approximate matrix decompositions, SIAM Review, 53
(2011), pp. 217–288.

[15] K. L. Ho and L. Ying, Hierarchical interpolative factorization for elliptic operators: integral
equations, Comm. Pure Appl. Math., 69 (2016), pp. 1314–1353.

[16] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press,
1994.

[17] R. Kriemann and S. Le Borne, H-FAINV: Hierarchically factored approximate inverse pre-
conditioners, Comput. Vis. Sci. 17 (2015), pp. 135–150.

[18] L. Lin, J. Lu, and L. Ying, Fast construction of hierarchical matrix representation from
matrix-vector multiplication, J. Comput. Phys., 230 (2011), pp. 4071–4087.

[19] W. Lyons, Fast Algorithms with Applications to PDEs, PhD thesis, University of California
Santa Barbara, USA, 2005.

[20] P. G. Martinsson, A fast randomized algorithm for computing a hierarchically semiseparable
representation of a matrix, SIAM. J. Matrix Anal. Appl., 32 (2011), pp. 1251–1274.

[21] P. G. Martinsson and V. Rokhlin, A fast direct solver for boundary integral equations in
two dimensions, J. Comput. Phys., 205 (2005), pp. 1–23.

[22] P. G. Schmitz and L. Ying, A fast direct solver for elliptic problems on general meshes in
2D, J. Comput. Phys., 231 (2012), pp. 1314–1338.

[23] S. Wang, M. V. de Hoop, and J. Xia, Acoustic inverse scattering via Helmholtz operator
factorization and optimization, J. Comput. Phys., 229 (2010), pp. 8445–8462.

[24] Y. Xi and J. Xia, On the stability of some hierarchical rank structured matrix algorithms,
SIAM J. Matrix Anal. Appl., to appear, (2016).

[25] Y. Xi, J. Xia, S. Cauley, and V. Balakrishnan, Superfast and stable structured solvers for
Toeplitz least squares via randomized sampling, SIAM J. Matrix Anal. Appl., 35 (2014),
pp. 44–72.

[26] Y. Xi, J. Xia, and R. Chan, A fast randomized eigensolver with structured LDL factorization
update, SIAM J. Matrix Anal. Appl., 35 (2014), pp. 974–996.

[27] J. Xia, On the complexity of some hierarchical structured matrix algorithms, SIAM J. Matrix
Anal. Appl., 33 (2012), pp. 388–410.

[28] J. Xia, Efficient structured multifrontal factorization for general large sparse matrices, SIAM
J. Sci. Comput., 35 (2013), pp. A832–A860.

[29] J. Xia, Randomized sparse direct solvers, SIAM J. Matrix Anal. Appl., 34 (2013), pp. 197–227.
[30] J. Xia, O(n) complexity randomized 3D direct solver with HSS2D structure, Purdue GMIG

Report 14-18, April 2014.
[31] J. Xia, Unifying hierarchically structured sparse and dense matrix factorizations, under prepa-

ration, 2015.
[32] J. Xia, S. Chandrasekaran, M. Gu, and X. S. Li, Superfast multifrontal method for large

structured linear systems of equations, SIAM J. Matrix Anal. Appl., 31 (2009), pp. 1382–
1411.

[33] J. Xia, S. Chandrasekaran, M. Gu, and X. S. Li, Fast algorithms for hierarchically semisep-
arable matrices, Numer. Linear Algebra Appl., 17 (2010), pp. 953–976.

[34] J. Xia and M. Gu, A multi-structured stable and superfast Toeplitz solver, preprint, 2009.
[35] J. Xia, Y. Xi, S. Cauley, and V. Balakrishnan, Fast sparse selected inversion, SIAM J.

Matrix Anal. Appl., 36 (2015), pp. 1283–1314.
[36] J. Xia, Y. Xi, and M. Gu, A superfast structured solver for Toeplitz linear systems via ran-

domized sampling, SIAM J. Matrix Anal. Appl., 33 (2012), pp. 837–858.

