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ANALYTICAL LOW-RANK COMPRESSION VIA PROXY POINT
SELECTION*

XIN YEf, JIANLIN XIAT, AND LEXING YINGH#

Abstract. It has been known in potential theory that, for some kernels matrices corresponding
to well-separated point sets, fast analytical low-rank approximation can be achieved via the use of
proxy points. This proxy point method gives a surprisingly convenient way of explicitly writing out
approximate basis matrices for a kernel matrix. However, this elegant strategy is rarely known or
used in the numerical linear algebra community. It still needs clear algebraic understanding of the
theoretical background. Moreover, rigorous quantifications of the approximation errors and reliable
criteria for the selection of the proxy points are still missing. In this work, we use contour integration
to clearly justify the idea in terms of a class of important kernels. We further provide comprehensive
accuracy analysis for the analytical compression and show how to choose nearly optimal proxy points.
The analytical compression is then combined with fast rank-revealing factorizations to get compact
low-rank approximations and also to select certain representative points. We provide the error bounds
for the resulting overall low-rank approximation. This work thus gives a fast and reliable strategy
for compressing those kernel matrices. Furthermore, it provides an intuitive way of understanding
the proxy point method and bridges the gap between this useful analytical strategy and practical
low-rank approximations. Some numerical examples help to further illustrate the ideas.

Key words. kernel matrix, proxy point method, low-rank approximation, approximation error
analysis, hybrid compression, strong rank-revealing factorization

AMS subject classifications. 15A23, 65F30, 65F35

1. Introduction. In this paper, we focus on the low-rank approximation of some
kernel matrices: those generated by a smooth kernel function k(z,y) evaluated at two
well-separated sets of points X = {z;}7, and Y = {y;}7_,. We suppose x(z,y) is
analytic and a degenerate approximation as follows exists:

(1.1) K(w,y) = Zajwj(ij(y),

where 1);’s and ¢;’s are appropriate basis functions and «a;’s are coefficients indepen-
dent of z and y. X and Y are well separated in the sense that the distance between
them is comparable to their diameters so that  in (1.1) is small. In this case, the
corresponding discretized kernel matrix as follows is numerically low rank:

(1.2) K = (k(2,y)rex yev)-

This type of problems frequently arises in a wide range of computations such as
numerical solutions of PDEs and integral equations, Gaussian processes, regression
with massive data, machine learning, and N-body problems. The low-rank approxi-
mation to K XY) enables fast matrix-vector multiplications in methods such as the
fast multipole method (FMM) [12]. It can also be used to quickly compute matrix
factorization and inversion based on rank structures such as H [16], H? [2, 17], and
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2 LOW-RANK COMPRESSION VIA PROXY POINT SELECTION

HSS [5, 41] forms. In fact, relevant low-rank approximations play a key role in rank-
structured methods. The success of the so-called fast rank-structured direct solvers
relies heavily on the quality and efficiency of low-rank approximations.

According to the Eckhart-Young Theorem [8], the best 2-norm low-rank approxi-
mation is given by the truncated SVD, which is usually expensive to compute directly.
More practical algebraic compression methods include rank-revealing factorizations
(especially strong rank-revealing QR [15] and strong rank-revealing LU factorizations
[32]), mosaic-skeleton approximations [38], interpolative decomposition [7], CUR de-
compositions [25], etc. Some of these algebraic methods have a useful feature of
structure preservation for K(XY): relevant resulting basis matrices can be subma-
trices of the original matrix and are still discretizations of k(z,y) at some subsets.
This is a very useful feature that can greatly accelerate some hierarchical rank struc-
tured direct solvers [42, 23, 40]. However, these algebraic compression methods have
O(rmn) complexity and are very costly for large-scale applications. The efficiency
may be improved by randomized SVDs [18, 13, 27], which still cost O(rmn) flops.

Unlike fully algebraic compression, there are also various analytical compression
methods that take advantage of degenerate approximations like in (1.1) to compute
low-rank approximations. The degenerate approximations may be obtained by Taylor
expansions, multipole expansions [12], spherical harmonic basis functions [36], Fourier
transforms with Poisson’s formula [1, 26], Laplace transforms with the Cauchy inte-
gral formula [24], Chebyshev interpolations [9], etc. Various other polynomial basis
functions may also be used [33].

These analytical approaches can quickly yield low-rank approximations to K (X:Y)
by explicitly producing approximate basis matrices. On the other hand, the resulting
low-rank approximations are usually not structure preserving in the sense that the
basis matrices are not directly related to K(X-¥). This is because the basis functions
{%;} and {p,} are generally different from s(z,y).

As a particular analytical compression method, the prozy point method has at-
tracted a lot of interests in recent years. It is tailored for kernel matrices and is very
attractive for different geometries of points [9, 28, 43, 45, 46]. While the methods
vary from one to another, they all share the same basic idea and can be summarized
in the surprisingly simple Algorithm 1.1, where the details are omitted and will be
discussed later in later sections. Note that an explicit degenerate form (1.1) is not
needed and the algorithm directly produces the matrix K% = (k(z, Y)eeX,ycz) as
an approximate column basis matrix in Step 2. This feature enables the extension of
the ideas of the classical fast multipole method (FMM) [12] to more general situations,
and examples include the recursive skeletonization [19, 28, 31] and kernel independent
FMM [29, 45, 46].

Algorithm 1.1 Basic prozy point method for low-rank approrimation
Input: k(z,y), X,Y
Output: Low-rank approximation KXY) ~ AB > Details in sections 2 and 3

1: Pick a proxy surface I' and a set of proxy points Z C T’
2 A+ KX7)
3. B+ ®%Y) for a matrix ®(%Y) such that KXY) ~ K(X2)$((%Y)

Notice that |Z| is generally much smaller than |Y| so that K(*-%) has a much
smaller column size than K(XY)_ It is then practical to apply reliable rank-revealing
factorizations to K(X-%) to extract a compact approximate column basis matrix for
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X. YE, J. XIA, AND L. YING 3

KXY) | This is a hybrid (analytical/algebraic) compression scheme, and the proxy
point method helps to significantly reduce the compression cost.

The significance of the proxy point method can also be seen from another view-
point: the selection of representative points. When a strong rank-revealing QR (SR-
RQR) factorization or interpolative decomposition is applied to KXY) an approx-
imate row basis matrix can be constructed from selected rows of KX:Y). Suppose
those rows correspond to the points X C X. Then X can be considered as a subset
of representative points. The analytical selection of X is not a trivial task. However,
with the use of the proxy points Z, we can essentially quickly find X based on K(X:2),
(See section 4 for more details.) That is, the set of proxy points Z can serve as a set of
auxiliary points based on which the representative points can be quickly identified. In
another word, when considering the interaction KX*¥) between X and Y, we can use
the interaction K X%) between X and the proxy points Z to extract the contribution
X from X.

Thus, the proxy point method is a very convenient and useful tool for researchers
working on kernel matrices. However, this elegant method is much less known in the
numerical linear algebra community. Indeed, even the compression of some special
Cauchy matrices (corresponding to a simple kernel) takes quite some efforts in matrix
computations [30, 34, 42]. In a recent literature survey [21] that lists many low-rank
approximation methods (including a method for kernel matrices), the proxy point
method is not mentioned at all. One reason that the proxy point method is not
widely known by researchers in matrix computation is the lack of intuitive algebraic
understanding of the background.

Moreover, in contrast with the success of the proxy point method in various
practical applications, its theoretical justifications are still lacking in the literature.
Potential theory [22, Chapter 6] can be used to explain the choice of proxy surface
T in Step 1 of Algorithm 1.1 when dealing with some PDE kernels (when x(z,y) is
the fundamental solution of a PDE). However, there is no clear justification of the
accuracy of the resulting low-rank approximation. Specifically, a clear explanation
of such a simple procedure in terms of both the approximation error and the proxy
point selection desired, especially from the linear algebra point of view.

Thus, we intend to seek a convenient way to understand the proxy point method
and its accuracy based on some kernels. The following types of errors will be consid-
ered (the notation will be made more precise later):

e The error ¢ for the approximation of kernel functions x(z,y) with the aid of
proxy points.

e The error £ for the low-rank approximation of kernel matrices KX:Y) via the
proxy point method.

e The error R for practical hybrid low-rank approximations of KY) based
on the proxy point method.

Our main objectives are as follows.

1. Provide an intuitive explanation of the proxy point method using contour
integration so as to make this elegant method more accessible to the numerical
linear algebra community.

2. Give systematic analysis of the approximation errors of the proxy point
method as well as the hybrid compression. We show how the kernel function
approximation error € and the low-rank compression error £ decay exponen-
tially with respect to the number of proxy points. We also show how our
bounds for the error £ are nearly independent of the geometries and sizes of
X and Y and why a bound for the error R may be independent of one set
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4 LOW-RANK COMPRESSION VIA PROXY POINT SELECTION

(say, Y).

3. Use the error analysis to choose a nearly optimal set of proxy points in the
low-rank kernel matrix compression. Our error bounds give a clear guideline
to control the errors and to choose the locations of the proxy points so as
to find nearly minimum errors. We also give a practical method to quickly
estimate the optimal locations.

We conduct such studies based on kernels of the form

(13) /i(xay) = ﬁa r,yeC, z#y,

where d is a positive integer. Such kernels and their variants are very useful in
PDE and integral equation solutions, structured ODE solutions [4], Cauchy matrix
computations [34], Toeplitz matrix direct solutions [6, 30, 42], structured divide-and-
conquer Hermitian eigenvalue solutions [14, 39], etc. Our derivations and analysis
may also be useful for studying other kernels and higher dimensions. This will be
considered in future work. (Note that the issue of what kernels the proxy point
method can apply to is not the focus here.)

We would like to point out that several of our results like the error analyses in
sections 3 and 4 can be easily extended to more general kernels and/or with other ap-
proximation methods, as long as a relative approximation error for the kernel function
approximation is available. Thus, our studies are useful for more general situations.

Our theoretical studies are also accompanied by various intuitive numerical tests
which show that the error bounds nicely capture the error behaviors and also predict
the location of the minimum errors.

In the remaining discussions, section 2 is devoted to an intuitive derivation of
the proxy point method via contour integration and the analysis of the accuracy (¢)
for the approximation of the kernel functions. The analytical low-rank compression
accuracy (£) and the nearly optimal proxy point selection are given in section 3.
The study is further extended to the analysis of the hybrid low-rank approximation
accuracy (R) with representative point selection in section 4. Some notation we use
frequently in the paper is listed below.

e The sets under consideration are X = {z;}7, and Y = {y;}/_,. Z = {z;}}L,
is the set of proxy points.

e C(a;7), D(a;7), and D(a;7) denote respectively the circle, open disk, and
closed disk with center a € C and radius v > 0.

o A(a;v1,72) ={z:7 < |z —a|] <7y} with 0 < 71 < 72 is an open annulus
region.

o K(XY) is the m x n kernel matrix (k(4,Yj)eiex,y;ey) With k(z,y) in (1.3).
Notation such as K(*+%) and K(X+%) will also be used and can be understood
similarly.

2. The proxy point method for kernel function approximation and its
accuracy. In this section, we show one intuitive derivation of the proxy point method
for the analytical approximation of the kernel functions, followed by detailed approx-
imation error analysis.

Note that the kernel function (1.3) is translation invariant, i.e., k(z — z,y — 2) =
k(z,y) for any = # y and z € C. Thus, the points X can be moved to be clustered
around the origin. Without loss of generality, we always assume X C D(0;~;) and
Y C A(0;7v2,73), where the radii satisfy 0 < 71 < 72 < 73. See Figure 2.1. Such
situations arise frequently in applications of the FMM.

This manuscript is for review purposes only.



X. YE, J. XIA, AND L. YING 5

Fic. 2.1. Ilustration of v, v1, v2, v3, X, and Y.

176 2.1. Derivation of the proxy point method via contour integration.

177 Consider any two points z € X and y € Y. Draw a Jordan curve (a simple closed

178 curve) I' that encloses « while excluding y, and let p > 0 be large enough so that the
circle C(0; p) encloses both I" and y. See Figure 2.2a.

// \\
- ~
s N s
/ AN /
/ \ /
// \\ //
/ 'k':(xu Y) \ /
| S
l y,l l
\\ T / \\ I s
\ / \ zj %i(z9)/
\ / \ /
\ / \ /
\\ Y \\ Y
L) - L C0p) -
(a) " and C(0; p) used in contour integration (b) Approximation of k(z,y)

Fic. 2.2. Approxzimating the interaction k(x,y) by &(x,y) in (2.3) using prozy points.

179

180 Define the domain €2, to be the open region inside C(0;p) and outside I'. Its
181 boundary is 99, = C(0;p) U (=T'), where —I' denotes the curve I' in its negative
182 direction. Now consider the function f(z) := k(x,z) on the closed domain 2, :=

183 Q, U 8Q,. The only singularity of f(2) is at z = = ¢ Q,. Thus, f(z) is analytic (or
184 holomorphic) on 2,. By the Cauchy integral formula [35],

52 Kzy) = fly) = —— (#) 4. — L/C “(QJ»Z)dZ_l/F wlw.2) g

27 00, 2 Y © 2ni (0p) Y 27i z—y

186 where i = v/—1. Note that

J=
cop) Y

1 ’ 2mp

S e @ =2 — )| = =D — )

z€C(05p)

This - 1Script 15 f cVleW PUTPOSE: ly.
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6 LOW-RANK COMPRESSION VIA PROXY POINT SELECTION

where the right-hand side goes to zero when p — oco. Thus,

02,

lim
P Je(op) 2 Y

Take the limit on (2.1) for p — oo, and the first term on the right-hand side vanishes.
We get

(2.2) k(z,y) = L/ Mdz.

2mi Jr y— =

Note that this result is different from the Cauchy integral formula in that the point y
under consideration is outside the contour I' in the integral.

To numerically approximate the contour integral (2.2), pick an N-point quadra-
ture rule with quadrature points {zj}éyzl C I' and the corresponding quadrature
weights {w, }jvzl Denoted by &(z,y) the approximation induced by such a quadra-
ture integration:

(2.3)
wj

Rz,y) = 27i(y — 2)

1 & k(z, zj al
Z Ko, 25) EZH z, ;)P (z5,y), with ¢;(z,y) =
Jj=1

271 4
j=1

Clearly, #(z,y) in (2.3) is a degenerate approximation to k(z,y) like (1.1). More-
over, it has one additional property of structure preservation: the function ¢;(z) in
this case is k(z, z;), which is exactly the original kernel x(x,y) with z; in the role of
y. This gives a simple and intuitive explanation of the use of proxy points: the inter-
action between x and y can essentially be approximated by the interaction between x
and some proxy points Z (and later we will further see that Z can be independent of
the number of x and y points). These two interactions are made equivalent (in terms
of computing potential) through the use of the function ¢;. In another word, equiv-
alent charges can be placed on the proxy surface. A pictorial illustration is shown in
Figure 2.2b.

2.2. Approximation error analysis. Although the approximation (2.3) holds
for any proxy surface I' satisfying the given conditions and for any quadrature rule,
we still need to make specific choices in order to obtain a more practical error bound.
Firstly, we assume the proxy surface to be a circle: T' = C(0;+), which is on of the
most popular choices in related work and is also consistent with our assumptions at
the beginning of section 2. For now, the proxy surface I is only assumed to be between
X and Y, ie., 71 < v < 72 as in Figure 2.1, and we will come back to discuss more
on this later. Secondly, the quadrature rule is chosen to be the composite trapezoidal
rule with

9ir 9ri
(2.4) zj:'yexp(g\/_m>, wj:%lzj, j=12...,N.

This choice can be justified by noting that the trapezoidal rule converges exponen-
tially fast if applied to a periodic integrand [37]. Our results later also align with
this. Moreover, if no specific direction is more important that others, the trapezoidal
rule performs uniformly well on all directions of the complex plane C. Some related
discussions of this issue can be found in [20, 44].

This manuscript is for review purposes only.
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X. YE, J. XIA, AND L. YING 7

As a result of the above assumptions, the function ¢;(z,y) in (2.3) becomes the
following form:

1 =z

¢(Zvy): Ny_zy

Y # 2,

where we dropped the subscript j since 5 does not explicitly appear on the right-hand
side. Also, we define

gz)= ——. AL

z—1’
The following lemma will be used in the analysis of the approximation error for
K(z,y).
LEMMA 2.1. Let {z; 9’:1 be the points defined in (2.4). Then the following result
holds for all z € C\{z;}}_,:

(2.5) ﬁ: - ijzj = Ng<(§)N> .

j=1

Proof. For any integer p, we have

(2.6) izﬁv _ NAP, ifpis 3.L multiple of IV,
= 0, otherwise.

If |z| <, then |z/z;] <1for j=1,2,...,N and

N . N 1 N oo 2 k o) N
I D e 3 DI C) IR DI € DEY
j=1 J =1 J j=1k=0 77 k=0 j=1
= ZZZNN'V IN" (with (2.6), only k = IN terms left)
1=0

= =W ((3)"):

If |z| > ~, we can similarly prove the result using |z;/z| < 1. Finally, since both sides
of (2.5) are analytic functions on C\{z; §V:1 and they agree on z with |z| # ~, by
continuity, they must also agree on z with |z| =, z ¢ {z; };V:I This completes the
proof. ]

In the following theorem, we derive an analytical expression for the accuracy of
approximating k(z,y) by R(z,y). Without loss of generality, assume z # 0.

THEOREM 2.2. Suppose k(x,y) in (1.3) is approximated by &(x,y) in (2.3) which
is obtained from the composite trapezoidal rule with (2.4). Assume x # 0. Then

(2.7) F(x,y) = w(z,y) (1 +e(x,y)),

where e(x,y) is the relative approzimation error

. d-1 J QI
09 cta = HRSme (7 U (1))

This manuscript is for review purposes only.
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8 LOW-RANK COMPRESSION VIA PROXY POINT SELECTION

Proof. We prove this theorem by induction on d. For d = 1, substituting (2.4)
into (2.3) yields

N _1 zj 1 3 @=z)=W=2%)
R(m’y)_N;(m—Zj)(y_Zj)_N(x_y)z (z—z)(y—z)

Il Il
=
S
| = —
s
=
g 1M
/~
— n
2| <
N— 3
Z
S~ I
INE
=
N N
~—~ &
~

e (B)) o (G))]

Thus, (2.7) holds for d = 1.
Now suppose (2.7) holds for d = k with k a positive integer. Equating (2.3) and
(2.7) (with d = k) and plugging in x(z,y) to get

ot e ((0)) 2 05 (0))

The derivatives of the left and right-hand sides with respect to x are, respectively,
—kz ¢’(Z] Y and

J=1 (z—z;)k+1

“M”
AN

k—1

o [ (()7) + 2 57 e ((0))
[ . difig(()) S ()

M

Jj=0 j=1

k—1 -
(- @ (7
=y [ * > e ()
7=0
k: 1 3k N
( L " y(k ] dd —9 <(7) > (all terms cancel except for j =k — 1)
x—y ! dx x

e e () e ()

=0

Thus,
3 ' b y—x) &I
jz—;(x(ﬁ_(;;)zj’“)*l:(w—z)k*l o <( ) )+; ;! d(icﬂ <(;>N>

That is, (2.7) holds for d = k + 1. By induction, (2.7)—(2.8) are true for any positive
integer d. O

With the analytical expression (2.8) we can give a rigorous upper bound for the
approximation error.
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X. YE, J. XIA, AND L. YING 9
THEOREM 2.3. Suppose 0 < |z| < v1 < v < |y|. With all the assumptions

in Theorem 2.2, there exists a positive integer Ny such that for any N > Np, the
approximation error (2.8) is bounded by

YN v N
. < = -
(2.9) Id%yﬂgOv‘)+ngx‘)7
where c =1 if d =1, and otherwise,

&« i (2d)i-
(2.10) c=2+2Y [(Iy/x|+1;fv1 (2d) "

Jj=1

Proof. For any positive integer NN,

P<<5>N>‘IQMW;V—1|§Iy/ﬂ;-1g<ﬁ;N)'

Thus, we only need to prove the following bound:

W () <en(12]):

When d = 1, it’s easy to verify that the above inequality holds for ¢ = 1 and any
positive integer N. We now consider the case when d > 2.
It can be verified that, for any positive integer 1,

e ()2 ()]

where ¢* denotes function ¢ raised to power i. Hence, the derivatives appearing in
(2.11) all have the following form:

21 o (0)7) - 550 (1)),

where ozgj) (1<i<j+1,0<j<d-—1) are constants.

We claim that, when N > d and for any 0 < j < d — 1, there exit constants 3\
dependent on d so that

d—1

(2.11) Y
§=0

0P| < BUINI, 1<i<j+1.
This claim can be proved by induction on j. It is obviously true when 7 = 0, and

B =1 in this case. When j = 1, (2.12) means that the claim is true with a(ll) =
aél) = N and ) = 1. Suppose the claim holds for j = k with 1 <k < d —2 (where

This manuscript is for review purposes only.



10 LOW-RANK COMPRESSION VIA PROXY POINT SELECTION

304  we also assume d > 2, since otherwise the claim is already proved). Then

;::;g«zf):;z(;iwazf))
w0 = el () B S T () o ()

=1
307 (by (2.12))
1 k Ny & k k (Y
oo =L {(N Bal )9<<x> )+Z(<iNk)ag )£ NG~ 1al,) o ((x) >
=2
309 + Nk + Doyl g <(7)N> ]
310 h z

311 Thus, the coefficients satisfy the following recurrence relation

(N — k), i=1,
312 o = LGN — k) 4 NG —1)al?, 2<i<k+1,
N(k+ 1)a,§’21, i=k+2.

313 Therefore, when N > d, we can pick (conservatively)
314 (2.14) B = 2dpk),

315 so that [o{" V| < B+ NF+1 That is, the claim holds for j = k+ 1 and this finishes
316 the induction.

317 Now, we go back to prove (2.11). By (2.13),
(2.15)

d—1 ;g d—1
. (y —=x) & NV _ *le () i N
o Z J! dai? (m) |4 ! Za ( )

7=0 7=0

d—1 g1 d—1 J+1
. (ly/x[+ 1) il | Iy/x\ +1 gl
319 SZ[ﬂZagJ)m 'x‘ Z ﬂ(J N]Zg ‘ ‘
320 j=0 i=1 j=
321 Set
322 (2.16) Ny = max{d, [log3/log|y1/z|]}.

323 Then for N > Ny, |y/z|N > |y1/z|V > 3 and g (]7/#|Y) < 1/2. Thus, for 1 < j <
324 d—1,

j+1 N N
i (Y Y
325 E g ‘—‘ <2 ’f‘ .
) _1g ( €z ) N g( Z

326 Continuing on (2.15), for N > N, we get

(2.17)

-2 &N iR I Y (I R VRt
327 —g( (= < - ith c= :

S (G)) e (BI), win em2 D S
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X. YE, J. XIA, AND L. YING 11

Note that with the way $U) is picked as in (2.14), 1) satisfies
BY) = (2d) 1M = (2d)y 7L, j=1,2,...,d 1.

Then ¢ in (2.17) becomes (2.10). Thus, (2.11) holds with ¢ in (2.10). d

The upper bound (2.9) in Theorem 2.3 has two implications.

e Since g(|y/v|") and g(|y/x|") decay almost exponentially with N and c is
just a polynomial in N, d, and |y/z| with degrees up to d — 1, the bound in
(2.9) decays roughly exponentially as N increases.

e The bound can help us identify a nearly optimal radius 7y of the proxy surface
I" so as to minimize the error. This is given in the following theorem.

THEOREM 2.4. Suppose 0 < |z| < v < |y| and k(x,y) in (1.3) is approrimated
by R(z,y) in (2.3) with (2.4). If the upper bound in (2.9) is viewed as a real function
in 7y on the interval (|zl,|y|), then there exists a positive integer No independent of -y,
such that for N > Na,

1. this upper bound has a unique minimizer v* € (|z|, |yl|);
2. the minimum of this upper bound decays asymptotically as O (|y/m|_N/2).

Proof. To find the minimizer, we just need to consider the real function

1 c

ht) = =1 ta—1’

t € (a,b),

where a = |z, b = |y|V, and c is either equal to 1 (for d = 1) or defined in (2.10)
(for d > 2). The derivative of the function is
B (t) = ﬁ, with  p(t) = (b — ac)t® 4 2ab(c — 1)t + ab(a — be).
(t —a)?(t =)
Consider p(t), which is a quadratic polynomial in ¢ with the following properties.
o The coefficient of the second order term is

b—ac=|z|" (ly/z|N —¢).

Since c is either equal to 1 (for d = 1) or a polynomial in N, d, and |y/x| with
degrees up to d—1 (for d > 2), there exists Ny larger than N in Theorem 2.3
such that |y/z|Y > ¢ for any N > Na. Thus, b — ac > 0 for N > No.

e The discriminant is 4abe(a — b)? > 0.

e When evaluated at t = a and t = b, the function p(t) gives respectively

p(a) = —ac(a —b)? <0, p(b) =b(a—0b)?>0.

All the properties above combined indicate that p(¢) has one root ty € (a,b) and
K(t) <0 on (a,tg) and h'(t) > 0 on (tg,b). Thus, ¢y is the only zero of p(t) in [a, b]
and v* = /%o is the unique minimizer of the upper bound in (2.9). The requirements
for picking Ny are Ny > Nj and |y/x|N2 > c. Hence, N, is independent of .

To prove the second part of the theorem, we explicitly compute the root ty of
p(t) =0 in (a,bd) and substitute it into h(t) to get

2y/cbfa+ (c+1)  2/cly/x|V? + (c+1) y |~ N/2
h(to) = - ~O H ,
b/a—1 ly/x|V —1 x
The details involve tedious algebra and are omitted here. 0
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12 LOW-RANK COMPRESSION VIA PROXY POINT SELECTION

In the proof, we can actually find the minimizer but are not explicitly writing it
out. The reason is that the minimizer depends on x and y and it makes more sense
to write a minimizer later when we consider the low-rank approximation of the kernel
matrix. See the next section.

3. Low-rank approximation accuracy and proxy point selection in the
proxy point method for kernel matrices. With the kernel x(z,y) in (1.3) ap-
proximated by &(z,y) in (2.3), a low-rank approximation to K (X-¥) in (1.2) as follows
is obtained:

(3.1) KO~ KXY o= (B(x, y)aex yey) = KD EY),

where ®(%Y) = (¢(2,9).ezyev). The analysis in subsection 2.2 provides entrywise
approximation errors for (3.1) (with implicit dependence on x). Now, we consider
normwise approximation errors for K (X-¥) and obtain relative error bounds indepen-
dent of the specific  and y points. The error analysis will be further used to estimate
the optimal choice of the radius «y for the proxy surface in the low-rank approximation.
We look at the cases d =1 and d > 2 separately.

3.1. The case d = 1. In this case, the proof of Theorem 2.2 for d = 1 gives an
explicit expression for the entrywise approximation error

(3.2) e(z,y) =g ((z)N> +g ((z)N> :

We then have the following result on the low-rank approximation error in Frobenius
norm.

PROPOSITION 3.1. Suppose d =1 and x(x,y) in (1.3) is approzimated by k(z,y)
in (2.3) with (2.4). If0 < |z] <M <y <y <|y| foralxz e X,y €Y, then for any
N >0,

K(X’Y) — K(X,Y) N N
[ KXY || g 7 ¥
Moreover, if the upper bound on the right-hand side is viewed as a function in -y, it has
a unique minimizer v* = /4172 and the minimum is 2g ((Wg/vl)N/Q) which decays

asymptotically as O (\72/71|—N/2),

Proof. The approximation error bound (3.3) is a direct application of the entry-
wise error in (3.2) together with the fact that g(¢) monotonically decreases for ¢ > 1.

To find the minimizer of the right-hand side of (3.3), we can either follow the
proof in Theorem 2.4 or simply use the following explicit expression:

N Ny = ! 1
g ((7/71) ) +g ((72/’7) ) T (y/m)N =1 + (v2/ )N — 1
. (v2/7)N =1

(v2/ )N + 1= ((v/ )N + (v2/N)

We just need to minimize (v/71)™ + (y2/7)", which reaches its minimum at v* =
V7172- 0

Remark 3.2. Although it is not easy to choose v to minimize the approximation
error directly, the minimizer v* for the bound in (3.3) can serve as a reasonable
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estimate of the minimizer for the error. These can be seen from an intuitive numerical
example below. In addition, the minimum 2g ((72/71)"/?) of the bound in (3.3)
decays nearly exponentially as N increases. Thus, to reach a relative approximation
accuracy 7, we can conveniently decide the number of proxy points:

voo(mny,

log(y2/71)

Clearly, N does not depend on the number of points or the geometries of X, Y. It
only depends on 7 and 7,/ which indicates the separation of X and Y. This is
consistent with the conclusions in the FMM context [36].

ExXAMPLE 1. We use an example to illustrate the results in Proposition 3.1 for
d = 1. The points in X and Y are uniformly chosen from their corresponding regions
and are plotted in Figure 3.1a, where m = |X| = 200, n = |Y| = 300, 1 = 0.5,
Yo = 2, and 3 = 5.

First, we fix the number of proxy points N = 20 and let v vary. We plot the
actual error Ex(7) := |[KCOY) — K& 5 /| KCSY) || 7 and the error bound in (3.3).
See Figure 3.1b. We can see that both plots are V-shape lines and the error bound
is a close estimate of the actual error. Moreover, the bound nicely captures the error
behavior, and the actual error reaches its minimum almost at the same location where
the error bound is minimized: v* = /9172 = 1. Thus, 7" is a nice choice to minimize
the error. The proxy points Z with radius v* are plotted in Figure 3.1a.

Then in Figure 3.1c, we fix v = ~* and let N vary. Again, the error bound
provides a nice estimate for the error. Furthermore, both the error and the bound
decay exponentially like O (|y2/71|~V/2) = O(27N).

3.2. The case d > 2. In this case, there is no simple explicit formula for (z, y)
like in (3.2). The results in Theorems 2.3 and 2.4 cannot be trivially extended to
study the normwise error either since no lower bound is imposed on |z| in |y/z|.
Nevertheless, we can derive a bound as follows.

PROPOSITION 3.3. Suppose d > 2 and k(z,y) in (1.3) is approximated by K(z,y)
in (2.3) with (24). If0<|z| <y <y <7y <y <73 foralx e X,y €Y, then
there exists a positive integer N3 independent of v such that for N > Ng,

||K~ (X)) _ K(X’Y)HF 2\ ¥ . AN
. < = — .
(34) oo <o ((5)) +eo((5)

where

o>

(3.5) -

d—1 ; ;
1)N}/ (2d)7 !
2425 lna/ml + DN
, j!
Jj=1
Moreover, if the upper bound in (3.4) is viewed as a real function in v on the interval

(717’72); then
1. this upper bound has a unique minimizer

(36) = <(75VV{V)\/W(7172)N(61)>

v — e

1/N

€ (71,72);

2. the minimum of this upper bound decays asymptotically as O (|72/71|*N/2).
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s Y
« Proxy points

-5
5

(a) Sets X and Y with y1 = 0.5, 72 =2, v3 = 5 and
proxy points Z selected with radius v* =1

10° : 10°
\ 7 N ——Actual error
\’1’:\ — —-FError bound
-2
10
10 10°®
|
|
107 I
‘ —— Actual error
: - —-Error bound
108 1070
0.5 1 1.5 2 5 10 15 20 25 30
5 N
(b) Varying proxy surface radius ~ (¢) Varying number of proxy points N

Fic. 3.1. Exzample 1: For d = 1, the selection of the proxy points and the actual relative error
ENn () compared with its upper bound in Proposition 3.1 for different v and N.

140 Proof. Following the proof of Theorem 2.4, we can set N3 to be the maximum of
441 Ng in Theorem 2.4 for all z € X. Based on the entrywise error bound in (2.9), we
442 can just show the following inequalities for N > N3 and any « € X,y € Y:

o) <o(@) () l@)

144 The first inequality is obvious. We then focus on the second one. Just for the purpose
445  of this proof, we write ¢ in (2.10) as ¢(|z|, |y|) to indicate its dependency on |z| and
446 |y|. c(Jz],]y|) can be viewed as a degree-(d — 1) polynomial in 1/|z| and |y| with all
447  positive coefficients.

448 Write

cttotoa |2 = et i1 [o |2 ) =4

150 The first term ¢(|z|, |y|)|x|?~! is a polynomial in |z| with all positive coefficients and
151 increases with |z|. The second term is
152 o(|2 ) fapt-e = 0

: : T

This - 1Script 15 f cVleW PUTPOSE: ly.
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With N > N3, it can be shown that this term is also strictly increasing in |z| for
0<lz| <y <.
Thus for any x € X,y € Y,

C(le,ly)g<‘Z’N><c%,yl (H ><071a73 (‘ ‘ )—@(‘JIN),

where the constant ¢ is defined in (3.5) which is ¢ in (2.10) with |y/x| replaced by

Y3/ M-
The minimizer v* in (3.6) for the upper bound is the root of a quadratic polyno-
mial in (7y1,72) and can be obtained following the proof of Theorem 2.4. ]

Based on this corollary, we can draw conclusions similar to those in Remark 3.2.
In addition, although 73 is needed so that Y is on a bounded domain in order to
derive the error bound (3.4), we believe such an limitation is not needed in practice.
In fact, the analytical compression tends to be more accurate when the points y are
farther away from the set X. Also, if 3 is too large, then we may slightly shift the x
points to make sure |z| is larger than a positive number 7o so as to similarly derive
an error bound using 7y, instead of vs.

3.3. A practical method to estimate the optimal radius ~. In Proposi-
tions 3.1 and 3.3, the upper bounds are used to estimate the optimal choice of v for
the radius of the proxy surface. In practice, it is possible that the upper bound may
be conservative, especially when d > 1. Thus, we also propose the following method
to quickly obtain a numerical estimate of the optimal choice.

In Propositions 3.1 and 3.3, the optimal v* is independent of the number of points
in X and Y and their distribution. This feature motivates the idea to pick subsets
Xo C D(0;v1) and Yy C A(0;2,73) and use them to estimate the actual error. That
is, we would expect the following two quantities to have similar behaviors when
varies in (y1,72):

(3.7) €9 () = || I (Xo-Yo) — (X0, Y0)|| () = [ KCOY) — KO
' N [ESEOI P | [KE ],

EY(v) can be used as an estimator of the actual approximation error Ex (7). Note
that K (X0:Y0) and K(X0:Y0) are computable through (1.3) and (2.3), respectively, so
EQ(v) can be computed explicitly, and the cost is extremely small if | Xo| < |X| and
Yo < [Y].

Note that in rank-structured matrix computations, often an admissible condition
or separation parameter is prespecified for the compression of multiple off-diagonal
blocks. In the case of kernel matrices, it means that the process of estimating the
optimal v needs to be run only once and can then be used in multiple compression
steps.

EXAMPLE 2. We use an example to demonstrate the numerical selection of the
optimal . Consider d = 2,3 and the two sets X and Y in Example 1 with the same
values v1,72,7s (see Figure 3.1a). Fix N = 30.

For the sets Xy and Y; we choose, we set | = | Xo| = |Yp| to be 1, 2, or 3. We make
sure x = =1 and y = o as points of C are always in Xy and Yj, respectively. These two
boundary points correspond to the worst case scenarios of the error bound developed
before. Thus, EY () is more likely to capture the behavior of (7). Any additional
points in X are uniformly distributed in the circle C(0;7;) and any additional points
in Yy are uniformly distributed in C(0; ).

This manuscript is for review purposes only.
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16 LOW-RANK COMPRESSION VIA PROXY POINT SELECTION

10° :
\ v 0 \\
\\‘ ; / 10 N
107¢ \\ 7 \‘\ -~
\ \ //
4 \\ ,/' N //
107 ¢ \, % \ /
\ 7 N v
\‘ ,/'/' \\ //'
10 o 107 \ y
\ / N /
\ 4 \ /
o —&n(7) En(v)
10 & ()l =1 & ()l =1
0.5 1 15 2 05 1 15 2
7 v
(a) d=2 (b)d=3
107 10°®
—&n(7) —&n(v)
&), l=1 =& ()1 =1
“ ——-&{ (7)1 =2 ——-E (7)1 =2
(1)1 =3 . (=3
108} 7t
1.04 1.06 1.08 11 112 11 112 114 116 118 12
v ¥

(¢) d =2, zoomed in around the critical point  (d) d = 3, zoomed in around the critical point

FiGc. 3.2. Example 2: For d = 2 and 3, how the estimator EJO\,('y) with | = 1,2,3 compare with
the actual error En (7).

With [ = 1, both Ex(y) and EY () are plotted. See Figures 3.2a and 3.2b for
d = 2 and 3, respectively. We can see that £ () already gives a good estimate of
the behavior of Ex(y) for both cases. Then in Figures 3.2c and 3.2d we plot £%(7)
for [ = 1,2,3 and zoom in at around the minimum since they almost coincide with
each other away from the minimum. The minimums of the three cases are very close
to each other, which indicates that [ = 1 suffices to give a reliable estimate of the
optimal radius in practice.

4. Low-rank approximation accuracy in hybrid compression and rep-
resentative point selection. The analytical compression in section 3 can serve as
a preliminary low-rank approximation, which is typically followed by an algebraic
compression step to get a more compact low-rank approximation. In this section,
we analyze the approximation error of such hybrid (analytical/algebraic) compression
applied to KXY,

Suppose m = |X| and n = |Y| are sufficiently large and N = |Z] is fixed. With
the preliminary low-rank approximation in (3.1), since K (X:2) has a much smaller
column size than KXY) it becomes practical to apply an SRRQR factorization to
K(%%) to obtain the following approximation:

(4.1) KX x UK with U:P(é),

This manuscript is for review purposes only.
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where P is a permutation matrix so that K(*%)|; is formed by selected rows of
K(%2) with the row index set J. J essentially corresponds to a subset X CcXand X
can be referred to as a set of representative points of X so that K(X:%) = K(X’Z)|J.
(4.1) is an interpolative decomposition of K(X:%)_ Tt is also referred to as a structure-

preserving rank-revealing (SPRR) factorization in [42] since K (X.2) i5 a submatrix of
KX.2),

Although U generally does not have orthonormal columns, the SRRQR. factor-
ization keeps its norm under control in the sense that entries of E have magnitudes
bounded by a number e (e.g., 2 or vN). See [15] for details.

We then have

(4.2a) KXY x KXY) = g(X2)g(4Y) (by (3.1))
(4.2b) ~ UK 2)p(ZY) (by (4.1))
(4.2c) = UREY) » UK(X’Y)7 (by (2.3) and similar to (3.1))

which is an SPRR factorization of KXY, R
Similarly, an SRRQR factorization can further be applied to K(*:¥) to produce

(4.3) KXY x KEDYT - with vV =Q ( l{? ) :
where @ is a permutation matrix and Y CY. The approximation (4.2) together with
(4.3) essentially enables us to quickly to select representative points from both X and
Y. In another word, we have a skeleton factorization of K(XY) as

(4.4) K&Y) x yRENYT,

Note that computing an SPRR or skeleton factorization for K(X:¥) directly (or to
find a submatrix KX:Y) with the largest “volume” [11, 38]) is typically prohibitively
expensive for large m and n. Here, the proxy point method substantially reduces the
cost. In fact, (4.2a) and (4.2¢) are done analytically with no compression cost. Only
the SRRQR factorizations of skinny matrices (K*:%) and/or K*-¥)) are needed.
The total compression cost is O(mNr) for (4.2) or O(mNr + nr?) for (4.4) instead
of O(mnr), where r = |X| > |Y|. As we have discussed before, N is only a constant
independent of m and m. Thus, this procedure is significantly more efficient than
applying SRRQR factorizations directly to the original kernel matrix.

The next theorem concerns the approximation error of the hybrid compression
via either (4.2) or (4.4).

THEOREM 4.1. Suppose 0 < |z| <11 <y <y <|y| <~ foranyx € X,y €Y
and the N proxy points in Z are located on the proxy surface with radius v*. Let r =
| X| and let the relative tolerance in the kernel approxzimation be 11 (i.e., le(z,y)| < 71
for e(x,y) in (2.7)) and the relative approximation tolerance (in Frobenius norm) in
the SRRQR factorizations (4.1) and (4.3) be 7o. Assume the entries of E in (4.1)
and F in (4.3) have magnitudes bounded by e. Then the approzimation of K5Y) by
(4.2) satisfies

| KX UK |5
[KED ]

(4.5) < 5171 + 8272,
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555 where

— _ 2d * d
356 31:1+¢W\/1_(m NOe =)™, t )

m(y1 +73)% (v2 =) (v =)t
558 The approzimation of KOY) by (4.4) satisfies

”K(X,Y) _ UK(X,Y)vTHF

559 (4.6) < 8171 + 8272,

[KE) g
560 where §9 = s9 + 51 — 1.
561 Proof. The following inequalities for x € X,y € Y,z € Z will be useful in the
562 proof:
63 (A7) 62,9 <
N(y2 —7%)
1

564 (4.8 KT, 2)| < —/———,

(4.8) |k(z, 2)] AT
W (49) <l y)l <
565 . — < |k(z,y —_.
566 (1 +73)¢ (v2 = 7)?
567 Note that
568 (4.10) [KEY) — pKEY)||,
569 < JEY) - RO | p g | KEY) g K EY)|
570 < KXY — KO || p 4 |[KY) — UKEY) || p 4 [UKEY) — UK
571 = |KXY) - KE)|| 4 | KD @EY) _ KD EY)|
572 + |UREY) —gKEY) |5 (by (4.2a)~(4.2c))
i < [KE - RO 4 KD — UKD p 9|
574 +UIF K = K& 5.
576  Now, we derive upper bounds separately for the three terms in the last step above.
577 The first term is the approximation error for the original kernel matrix from the
578 proxy point method. Then
579 (4.11) [EKCY) — KOV || < 7 || KV |
580 Next, from the SPRR factorization of K (X:4)
581 K2 —UKED | P | p < 7o KA p|| 2P| 2

582 (4.7) means

583 oY) < \/Nnvi* -2 gl .
I I Nrz=7) VNyp-—v
584 (4.8) and (4.9) mean

. IKXD)2 mN/(* =72)* N (1 +79)*

[KE2 " mn/(y +73)%  n (v —m)2¢

This - uSscript s fi cview P
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Then
(412) KD —UKED||pl| 8P| < 7y [~ IKE)
Ny —*
(1 +73)" (X,Y)
<T K\ .
(2 =) (v _'Yl)d” I
Thirdly,
I I
wie =2 (5)] =|(3)] <vrrm=—ne
b F E F
1Y) — K| <o | K
According to (4.9),

S gl 0 L4 i N [ i
K2, K2 mn/ (2 —71)24 m(yr + )24
Then

(4.13) U] KEY) — K|

_ _ ~\2d
§7'1\/1"+(m1")1"62\/1(m N =m) HK(X’Y)HF.

m(y1 + y3)??

Combining the results (4.11)—(4.13) from the four steps above yields (4.5). To
show (4.6), we use the following inequality:

KO —UREVT
< ”K(x,y) _ f((x,y)”F + ”K(x,z)q)(z,y) _ UK(X,Z)q)(z,Y)”F
+ | UKEY) UK EY)| o4 [UKEY) UK EDYT
Then the proof can proceed similarly. 0
If e in SRRQR factorizations is a constant, with fixed IV, the two constants in
(4.5) scale roughly as s1 = O(y/m) and sy = O(1). Moreover, once the annulus region

A(0;v2,73) is fixed, the set Y is completely irrelevant to the algorithm for obtaining
the approximation (4.2) and the error bound (4.5). The column basis matrix U and
the set X of representative points can be obtained with only the set X, and the error
analysis in (4.5) applies to any set Y in A(0;v2,7s3).

Remark 4.2. Note that our error analyses in the previous section and this sec-
tion are not necessarily restricted to the particular kernel like in (1.3) or the proxy
point approximation method. In fact, the error bounds can be easily modified for
more general kernels and/or with other approximation methods as long as a relative
error bound for the kernel function approximation is available. This bound is 7 in
Theorem 4.1.

We then use a comprehensive example to show the accuracies of the analytical
compression and the hybrid compression, as well as the selections of the proxy points
and the representative points.

ExaMPLE 3. We generate a triangular finite element mesh on a rectangle domain
[0,2] x [0, 1] based on the package MESHPART [10]. The two sets of points X and Y’
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are the mesh points as shown in Figure 4.1, where | X| = 821, |Y| = 4125, v = 0.3,
and v2 = 0.45. We compute the low-rank approximation in (4.2) and report the rela-
tive errors in the analytical compression step and the hybrid low-rank approximation
respectively:

Eny) = | KXY) - KXY () = IKEY) K&,
||K(X’Y)HF ’ ||K(X,Y)HF

Fic. 4.1. Ezample 3: Sets X and Y in the mesh, where the image is based on the package
MESHPART [10].

In the first set of tests, the number of proxy points N is chosen to reach a rela-
tive tolerance 7 = 10eyacn in the proxy point method, where e,,cn is the machine
precision. (Note that 7 is the tolerance for approximating x(z,y), and the actual
computed Frobenius-norm matrix approximation error Ey(7y) may be slightly larger
due to floating point errors.)

We vary the radius v for the proxy surface between ~; and 5. For d = 1,2, 3,4,
En(y) and Ry(7y) are shown in Figure 4.2. In practice, we can use the method
in subsection 3.3 to obtain an approximate optimal radius 7*. To show that A*
is very close to the actual optimal radius, we can look at Figure 4.2a for d = 1.
Here, N = 169 and ¥* = 0.3675 which is very close to the actual optimal radius
0.3678. In addition, the error bound in Proposition 3.1 can be used to provide another
estimate /7172 = 0.3674. Both estimates are very close to the actual minimizer,
which indicates the effectiveness of the error analysis and the minimizer estimations.
When v = 7%, we have Ex(y) = 3.2106F — 16 and Ry(y) = 1.1008E — 15, and
the numerical rank resulting from the hybrid compression is 78. The numerical rank
produced by SVD under a similar relative error is 68.

Similar results are obtained for d = 2,3,4. See Figure 4.2 and Table 4.1. (We
notice that En(7) is sometimes larger than R (7), especially when = is closer to X or
Y. This is likely due to the different amount of evaluations of the kernel function in
the error computations. The kernel function evaluations may have higher numerical
errors when v gets closer to 71 or 2. When + is not too close to y1 or vz, Rn(7)
is smaller than Ex(y), which is consistent with the theoretical estimates. Here, no
stabilization is integrated into the proxy point method (which may be fixed based on
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Fic. 4.2. Ezample 3: En(v) in the analytical compression step and Ry (y) in the hybrid
low-rank approximation with varying radius -y.

a technique in [3]), while SRRQR factorizations have full stability measurements and
produce column basis matrices with controlled norms. On the other hand, this also
reflects that hybrid compression is a practical method.)

TABLE 4.1
Ezxzample 3: Hybrid compression results, where 4* is the approxzimate optimal radius.

d | N  Optimal v ¥ Numerical rank En(H*) RN (7%)

1] 169 0.3678 0.3675 78 3.2106 K — 16  1.1008FE — 15
2| 179 0.3733 0.3713 88 1.0431F — 15 2.1817F — 15
3| 187 0.3774 0.3759 93 2.3565F — 15  2.0537E — 14
4| 193 0.3816 0.3792 99 8.9381F — 15 7.5528F — 14

Also in Figure 4.3 for d = 1,2, we plot the proxy points as well as the represen-
tative points X produced by the hybrid approximation with v = 7*.

In our next set of tests, we vary the number of proxy points N for the analytical
compression step and check its effect on the hybrid low-rank approximation error. For
each N, the radius of the proxy surface v is set to be ¥*. The results are shown in
Figure 4.4. The approximation error for the analytical compression decays exponen-
tially as predicted by Propositions 3.1 and 3.3 (until N reaches the values indicated
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(a)d=1 (b) d=2

Fi1c. 4.3. Ezample 3: Representative points (+ shapes) and proxy points (X shapes).

in Table 4.1; after that point, it stops to decay due to floating point errors).

5. Conclusions. The proxy point method is a very simple and convenient strat-
egy for computing low-rank approximations for kernel matrices evaluated at well-
separated sets. In this paper, we present an intuitive way of explaining the method.
Moreover, we provide rigorous approximation error analysis for the kernel function
approximation and low-rank kernel matrix approximation in terms of a class of impor-
tant kernels. Based on the analysis, we show how to choose nearly optimal locations
of the proxy points. The work can serve as a starting point to study the proxy point
method for more general kernels and higher dimensions. Some possible strategies in
future work will be based on other kernel expansions or Cauchy FMM ideas [24].
Various results here are already applicable to more general kernels and other approx-
imation methods. We also hope this work can draw more attentions from researchers
in the field of matrix computations to study and utilize such an elegant method.
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