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Abstract. It has been known in potential theory that, for some kernels matrices corresponding4
to well-separated point sets, fast analytical low-rank approximation can be achieved via the use of5
proxy points. This proxy point method gives a surprisingly convenient way of explicitly writing out6
approximate basis matrices for a kernel matrix. However, this elegant strategy is rarely known or7
used in the numerical linear algebra community. It still needs clear algebraic understanding of the8
theoretical background. Moreover, rigorous quantifications of the approximation errors and reliable9
criteria for the selection of the proxy points are still missing. In this work, we use contour integration10
to clearly justify the idea in terms of a class of important kernels. We further provide comprehensive11
accuracy analysis for the analytical compression and show how to choose nearly optimal proxy points.12
The analytical compression is then combined with fast rank-revealing factorizations to get compact13
low-rank approximations and also to select certain representative points. We provide the error bounds14
for the resulting overall low-rank approximation. This work thus gives a fast and reliable strategy15
for compressing those kernel matrices. Furthermore, it provides an intuitive way of understanding16
the proxy point method and bridges the gap between this useful analytical strategy and practical17
low-rank approximations. Some numerical examples help to further illustrate the ideas.18
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1. Introduction. In this paper, we focus on the low-rank approximation of some22

kernel matrices: those generated by a smooth kernel function κ(x, y) evaluated at two23

well-separated sets of points X = {xj}mj=1 and Y = {yj}nj=1. We suppose κ(x, y) is24

analytic and a degenerate approximation as follows exists:25

(1.1) κ(x, y) ≈
r∑

j=1

αjψj(x)φj(y),26

where ψj ’s and φj ’s are appropriate basis functions and αj ’s are coefficients indepen-27

dent of x and y. X and Y are well separated in the sense that the distance between28

them is comparable to their diameters so that r in (1.1) is small. In this case, the29

corresponding discretized kernel matrix as follows is numerically low rank:30

(1.2) K(X,Y ) ≡ (κ(x, y)x∈X,y∈Y ).31

This type of problems frequently arises in a wide range of computations such as32

numerical solutions of PDEs and integral equations, Gaussian processes, regression33

with massive data, machine learning, and N -body problems. The low-rank approxi-34

mation to K(X,Y ) enables fast matrix-vector multiplications in methods such as the35

fast multipole method (FMM) [12]. It can also be used to quickly compute matrix36

factorization and inversion based on rank structures such as H [16], H2 [2, 17], and37
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2 LOW-RANK COMPRESSION VIA PROXY POINT SELECTION

HSS [5, 41] forms. In fact, relevant low-rank approximations play a key role in rank-38

structured methods. The success of the so-called fast rank-structured direct solvers39

relies heavily on the quality and efficiency of low-rank approximations.40

According to the Eckhart-Young Theorem [8], the best 2-norm low-rank approxi-41

mation is given by the truncated SVD, which is usually expensive to compute directly.42

More practical algebraic compression methods include rank-revealing factorizations43

(especially strong rank-revealing QR [15] and strong rank-revealing LU factorizations44

[32]), mosaic-skeleton approximations [38], interpolative decomposition [7], CUR de-45

compositions [25], etc. Some of these algebraic methods have a useful feature of46

structure preservation for K(X,Y ): relevant resulting basis matrices can be subma-47

trices of the original matrix and are still discretizations of κ(x, y) at some subsets.48

This is a very useful feature that can greatly accelerate some hierarchical rank struc-49

tured direct solvers [42, 23, 40]. However, these algebraic compression methods have50

O(rmn) complexity and are very costly for large-scale applications. The efficiency51

may be improved by randomized SVDs [18, 13, 27], which still cost O(rmn) flops.52

Unlike fully algebraic compression, there are also various analytical compression53

methods that take advantage of degenerate approximations like in (1.1) to compute54

low-rank approximations. The degenerate approximations may be obtained by Taylor55

expansions, multipole expansions [12], spherical harmonic basis functions [36], Fourier56

transforms with Poisson’s formula [1, 26], Laplace transforms with the Cauchy inte-57

gral formula [24], Chebyshev interpolations [9], etc. Various other polynomial basis58

functions may also be used [33].59

These analytical approaches can quickly yield low-rank approximations to K(X,Y )60

by explicitly producing approximate basis matrices. On the other hand, the resulting61

low-rank approximations are usually not structure preserving in the sense that the62

basis matrices are not directly related to K(X,Y ). This is because the basis functions63

{ψj} and {φj} are generally different from κ(x, y).64

As a particular analytical compression method, the proxy point method has at-65

tracted a lot of interests in recent years. It is tailored for kernel matrices and is very66

attractive for different geometries of points [9, 28, 43, 45, 46]. While the methods67

vary from one to another, they all share the same basic idea and can be summarized68

in the surprisingly simple Algorithm 1.1, where the details are omitted and will be69

discussed later in later sections. Note that an explicit degenerate form (1.1) is not70

needed and the algorithm directly produces the matrix K(X,Z) ≡ (κ(x, y)x∈X,y∈Z) as71

an approximate column basis matrix in Step 2. This feature enables the extension of72

the ideas of the classical fast multipole method (FMM) [12] to more general situations,73

and examples include the recursive skeletonization [19, 28, 31] and kernel independent74

FMM [29, 45, 46].75

Algorithm 1.1 Basic proxy point method for low-rank approximation

Input: κ(x, y), X, Y
Output: Low-rank approximation K(X,Y ) ≈ AB ◃ Details in sections 2 and 3

1: Pick a proxy surface Γ and a set of proxy points Z ⊂ Γ
2: A← K(X,Z)

3: B ← Φ(Z,Y ) for a matrix Φ((Z,Y ) such that KX,Y ) ≈ K(X,Z)Φ(Z,Y )

Notice that |Z| is generally much smaller than |Y | so that K(X,Z) has a much76

smaller column size than K(X,Y ). It is then practical to apply reliable rank-revealing77

factorizations to K(X,Z) to extract a compact approximate column basis matrix for78
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K(X,Y ). This is a hybrid (analytical/algebraic) compression scheme, and the proxy79

point method helps to significantly reduce the compression cost.80

The significance of the proxy point method can also be seen from another view-81

point: the selection of representative points. When a strong rank-revealing QR (SR-82

RQR) factorization or interpolative decomposition is applied to K(X,Y ), an approx-83

imate row basis matrix can be constructed from selected rows of K(X,Y ). Suppose84

those rows correspond to the points X̂ ⊂ X. Then X̂ can be considered as a subset85

of representative points. The analytical selection of X̂ is not a trivial task. However,86

with the use of the proxy points Z, we can essentially quickly find X̂ based on K(X,Z).87

(See section 4 for more details.) That is, the set of proxy points Z can serve as a set of88

auxiliary points based on which the representative points can be quickly identified. In89

another word, when considering the interaction K(X,Y ) between X and Y , we can use90

the interaction K(X,Z) between X and the proxy points Z to extract the contribution91

X̂ from X.92

Thus, the proxy point method is a very convenient and useful tool for researchers93

working on kernel matrices. However, this elegant method is much less known in the94

numerical linear algebra community. Indeed, even the compression of some special95

Cauchy matrices (corresponding to a simple kernel) takes quite some efforts in matrix96

computations [30, 34, 42]. In a recent literature survey [21] that lists many low-rank97

approximation methods (including a method for kernel matrices), the proxy point98

method is not mentioned at all. One reason that the proxy point method is not99

widely known by researchers in matrix computation is the lack of intuitive algebraic100

understanding of the background.101

Moreover, in contrast with the success of the proxy point method in various102

practical applications, its theoretical justifications are still lacking in the literature.103

Potential theory [22, Chapter 6] can be used to explain the choice of proxy surface104

Γ in Step 1 of Algorithm 1.1 when dealing with some PDE kernels (when κ(x, y) is105

the fundamental solution of a PDE). However, there is no clear justification of the106

accuracy of the resulting low-rank approximation. Specifically, a clear explanation107

of such a simple procedure in terms of both the approximation error and the proxy108

point selection desired, especially from the linear algebra point of view.109

Thus, we intend to seek a convenient way to understand the proxy point method110

and its accuracy based on some kernels. The following types of errors will be consid-111

ered (the notation will be made more precise later):112

• The error ε for the approximation of kernel functions κ(x, y) with the aid of113

proxy points.114

• The error E for the low-rank approximation of kernel matrices K(X,Y ) via the115

proxy point method.116

• The error R for practical hybrid low-rank approximations of K(X,Y ) based117

on the proxy point method.118

Our main objectives are as follows.119

1. Provide an intuitive explanation of the proxy point method using contour120

integration so as to make this elegant method more accessible to the numerical121

linear algebra community.122

2. Give systematic analysis of the approximation errors of the proxy point123

method as well as the hybrid compression. We show how the kernel function124

approximation error ε and the low-rank compression error E decay exponen-125

tially with respect to the number of proxy points. We also show how our126

bounds for the error E are nearly independent of the geometries and sizes of127

X and Y and why a bound for the error R may be independent of one set128
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4 LOW-RANK COMPRESSION VIA PROXY POINT SELECTION

(say, Y ).129

3. Use the error analysis to choose a nearly optimal set of proxy points in the130

low-rank kernel matrix compression. Our error bounds give a clear guideline131

to control the errors and to choose the locations of the proxy points so as132

to find nearly minimum errors. We also give a practical method to quickly133

estimate the optimal locations.134

We conduct such studies based on kernels of the form135

(1.3) κ(x, y) =
1

(x− y)d
, x, y ∈ C, x ̸= y,136

where d is a positive integer. Such kernels and their variants are very useful in137

PDE and integral equation solutions, structured ODE solutions [4], Cauchy matrix138

computations [34], Toeplitz matrix direct solutions [6, 30, 42], structured divide-and-139

conquer Hermitian eigenvalue solutions [14, 39], etc. Our derivations and analysis140

may also be useful for studying other kernels and higher dimensions. This will be141

considered in future work. (Note that the issue of what kernels the proxy point142

method can apply to is not the focus here.)143

We would like to point out that several of our results like the error analyses in144

sections 3 and 4 can be easily extended to more general kernels and/or with other ap-145

proximation methods, as long as a relative approximation error for the kernel function146

approximation is available. Thus, our studies are useful for more general situations.147

Our theoretical studies are also accompanied by various intuitive numerical tests148

which show that the error bounds nicely capture the error behaviors and also predict149

the location of the minimum errors.150

In the remaining discussions, section 2 is devoted to an intuitive derivation of151

the proxy point method via contour integration and the analysis of the accuracy (ε)152

for the approximation of the kernel functions. The analytical low-rank compression153

accuracy (E) and the nearly optimal proxy point selection are given in section 3.154

The study is further extended to the analysis of the hybrid low-rank approximation155

accuracy (R) with representative point selection in section 4. Some notation we use156

frequently in the paper is listed below.157

• The sets under consideration areX = {xj}mj=1 and Y = {yj}nj=1. Z = {zj}Nj=1158

is the set of proxy points.159

• C(a; γ), D(a; γ), and D̄(a; γ) denote respectively the circle, open disk, and160

closed disk with center a ∈ C and radius γ > 0.161

• A(a; γ1, γ2) = {z : γ1 < |z − a| < γ2} with 0 < γ1 < γ2 is an open annulus162

region.163

• K(X,Y ) is the m× n kernel matrix (κ(xi, yj)xi∈X,yj∈Y ) with κ(x, y) in (1.3).164

Notation such as K(X,Z) and K(X̂,Z) will also be used and can be understood165

similarly.166

2. The proxy point method for kernel function approximation and its167

accuracy. In this section, we show one intuitive derivation of the proxy point method168

for the analytical approximation of the kernel functions, followed by detailed approx-169

imation error analysis.170

Note that the kernel function (1.3) is translation invariant, i.e., κ(x− z, y − z) =171

κ(x, y) for any x ̸= y and z ∈ C. Thus, the points X can be moved to be clustered172

around the origin. Without loss of generality, we always assume X ⊂ D(0; γ1) and173

Y ⊂ A(0; γ2, γ3), where the radii satisfy 0 < γ1 < γ2 < γ3. See Figure 2.1. Such174

situations arise frequently in applications of the FMM.175
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Y

X

Fig. 2.1. Illustration of γ, γ1, γ2, γ3, X, and Y .

2.1. Derivation of the proxy point method via contour integration.176

Consider any two points x ∈ X and y ∈ Y . Draw a Jordan curve (a simple closed177

curve) Γ that encloses x while excluding y, and let ρ > 0 be large enough so that the178

circle C(0; ρ) encloses both Γ and y. See Figure 2.2a.

y
x

(a) Γ and C(0; ρ) used in contour integration

y
x

zj

(b) Approximation of κ(x, y)

Fig. 2.2. Approximating the interaction κ(x, y) by κ̃(x, y) in (2.3) using proxy points.

179
Define the domain Ωρ to be the open region inside C(0; ρ) and outside Γ. Its180

boundary is ∂Ωρ := C(0; ρ) ∪ (−Γ), where −Γ denotes the curve Γ in its negative181

direction. Now consider the function f(z) := κ(x, z) on the closed domain Ω̄ρ :=182

Ωρ ∪ ∂Ωρ. The only singularity of f(z) is at z = x /∈ Ω̄ρ. Thus, f(z) is analytic (or183

holomorphic) on Ω̄ρ. By the Cauchy integral formula [35],184

(2.1) κ(x, y) = f(y) =
1

2πi

∫
∂Ωρ

f(z)

z − y
dz =

1

2πi

∫
C(0;ρ)

κ(x, z)

z − y
dz− 1

2πi

∫
Γ

κ(x, z)

z − y
dz,185

where i =
√
−1. Note that186 ∣∣∣∣∣

∫
C(0;ρ)

κ(x, z)

z − y
dz

∣∣∣∣∣ ≤ 2πρ · max
z∈C(0;ρ)

∣∣∣∣ 1

(x− z)d(z − y)

∣∣∣∣ ≤ 2πρ

(ρ− |x|)d(ρ− |y|)
,187

188
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6 LOW-RANK COMPRESSION VIA PROXY POINT SELECTION

where the right-hand side goes to zero when ρ→∞. Thus,189

lim
ρ→∞

∫
C(0;ρ)

κ(x, z)

z − y
dz = 0.190

Take the limit on (2.1) for ρ→∞, and the first term on the right-hand side vanishes.191

We get192

(2.2) κ(x, y) =
1

2πi

∫
Γ

κ(x, z)

y − z
dz.193

Note that this result is different from the Cauchy integral formula in that the point y194

under consideration is outside the contour Γ in the integral.195

To numerically approximate the contour integral (2.2), pick an N -point quadra-196

ture rule with quadrature points {zj}Nj=1 ⊂ Γ and the corresponding quadrature197

weights {ωj}Nj=1. Denoted by κ̃(x, y) the approximation induced by such a quadra-198

ture integration:199

(2.3)

κ̃(x, y) =
1

2πi

N∑
j=1

ωj
κ(x, zj)

y − zj
≡

N∑
j=1

κ(x, zj)ϕj(zj , y), with ϕj(z, y) =
ωj

2πi(y − z)
.200

Clearly, κ̃(x, y) in (2.3) is a degenerate approximation to κ(x, y) like (1.1). More-201

over, it has one additional property of structure preservation: the function φj(x) in202

this case is κ(x, zj), which is exactly the original kernel κ(x, y) with zj in the role of203

y. This gives a simple and intuitive explanation of the use of proxy points: the inter-204

action between x and y can essentially be approximated by the interaction between x205

and some proxy points Z (and later we will further see that Z can be independent of206

the number of x and y points). These two interactions are made equivalent (in terms207

of computing potential) through the use of the function ϕj . In another word, equiv-208

alent charges can be placed on the proxy surface. A pictorial illustration is shown in209

Figure 2.2b.210

2.2. Approximation error analysis. Although the approximation (2.3) holds211

for any proxy surface Γ satisfying the given conditions and for any quadrature rule,212

we still need to make specific choices in order to obtain a more practical error bound.213

Firstly, we assume the proxy surface to be a circle: Γ = C(0; γ), which is on of the214

most popular choices in related work and is also consistent with our assumptions at215

the beginning of section 2. For now, the proxy surface Γ is only assumed to be between216

X and Y , i.e., γ1 < γ < γ2 as in Figure 2.1, and we will come back to discuss more217

on this later. Secondly, the quadrature rule is chosen to be the composite trapezoidal218

rule with219

(2.4) zj = γ exp

(
2jπi

N

)
, ωj =

2πi

N
zj , j = 1, 2, . . . , N.220

This choice can be justified by noting that the trapezoidal rule converges exponen-221

tially fast if applied to a periodic integrand [37]. Our results later also align with222

this. Moreover, if no specific direction is more important that others, the trapezoidal223

rule performs uniformly well on all directions of the complex plane C. Some related224

discussions of this issue can be found in [20, 44].225
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As a result of the above assumptions, the function ϕj(z, y) in (2.3) becomes the226

following form:227

ϕ(z, y) =
1

N

z

y − z
, y ̸= z,228

where we dropped the subscript j since j does not explicitly appear on the right-hand229

side. Also, we define230

g(z) =
1

z − 1
, z ̸= 1.231

The following lemma will be used in the analysis of the approximation error for232

κ(x, y).233

Lemma 2.1. Let {zj}Nj=1 be the points defined in (2.4). Then the following result234

holds for all z ∈ C\{zj}Nj=1:235

(2.5)

N∑
j=1

zj
z − zj

= Ng

(( z
γ

)N)
.236

Proof. For any integer p, we have237

(2.6)

N∑
j=1

zpj =

{
Nγp, if p is a multiple of N,

0, otherwise.
238

If |z| < γ, then |z/zj | < 1 for j = 1, 2, . . . , N and239

N∑
j=1

zj
z − zj

= −
N∑
j=1

1

1− z/zj
= −

N∑
j=1

∞∑
k=0

(
z

zj

)k

= −
∞∑
k=0

(
zk

N∑
j=1

z−k
j

)
240

= −
∞∑
l=0

zlNNγ−lN (with (2.6), only k = lN terms left)241

= − N

1− zN/γN
= Ng

(( z
γ

)N)
.242

243

If |z| > γ, we can similarly prove the result using |zj/z| < 1. Finally, since both sides244

of (2.5) are analytic functions on C\{zj}Nj=1 and they agree on z with |z| ≠ γ, by245

continuity, they must also agree on z with |z| = γ, z /∈ {zj}Nj=1. This completes the246

proof.247

In the following theorem, we derive an analytical expression for the accuracy of248

approximating κ(x, y) by κ̃(x, y). Without loss of generality, assume x ̸= 0.249

Theorem 2.2. Suppose κ(x, y) in (1.3) is approximated by κ̃(x, y) in (2.3) which250

is obtained from the composite trapezoidal rule with (2.4). Assume x ̸= 0. Then251

(2.7) κ̃(x, y) = κ(x, y) (1 + ε(x, y)) ,252

where ε(x, y) is the relative approximation error253

(2.8) ε(x, y) :=
κ̃(x, y)− κ(x, y)

κ(x, y)
= g

((y
γ

)N)
+

d−1∑
j=0

(y − x)j

j!

dj

dxj
g

((γ
x

)N)
.254
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Proof. We prove this theorem by induction on d. For d = 1, substituting (2.4)255

into (2.3) yields256

κ̃(x, y) =
1

N

N∑
j=1

zj
(x− zj)(y − zj)

=
1

N(x− y)

N∑
j=1

(x− zj)− (y − zj)
(x− zj)(y − zj)

zj257

=
1

N(x− y)

 N∑
j=1

zj
y − zj

−
N∑
j=1

zj
x− zj

258

=
1

N(x− y)

(
Ng

((y
γ

)N)
−Ng

((x
γ

)N))
(Lemma 2.1)259

=
1

x− y

[
1 + g

((y
γ

)N)
+ g

((γ
x

)N)]
.260

261

Thus, (2.7) holds for d = 1.262

Now suppose (2.7) holds for d = k with k a positive integer. Equating (2.3) and263

(2.7) (with d = k) and plugging in κ(x, y) to get264

N∑
j=1

ϕj(zj , y)

(x− zj)k
=

1

(x− y)k

1 + g

((y
γ

)N)
+

k−1∑
j=0

(y − x)j

j!

dj

dxj
g

((γ
x

)N) .265

The derivatives of the left and right-hand sides with respect to x are, respectively,266

−k
∑N

j=1
ϕj(zj ,y)

(x−zj)k+1 and267

−k
(x− y)k+1

1 + g

((y
γ

)N)
+

k−1∑
j=0

(y − x)j

j!

dj

dxj
g

((γ
x

)N)268

+
1

(x− y)k

k−1∑
j=0

(y − x)j

j!

dj+1

dxj+1
g

((γ
x

)N)
−

k−1∑
j=1

(y − x)j−1

(j − 1)!

dj

dxj
g

((γ
x

)N)269

=
−k

(x− y)k+1

1 + g

((y
γ

)N)
+

k−1∑
j=0

(y − x)j

j!

dj

dxj
g

((γ
x

)N)270

+
1

(x− y)k
(y − x)k−1

(k − 1)!

dk

dxk
g

((γ
x

)N)
(all terms cancel except for j = k − 1)271

=
−k

(x− y)k+1

1 + g

((y
γ

)N)
+

k∑
j=0

(y − x)j

j!

dj

dxj
g

((γ
x

)N) .272

273

Thus,274

N∑
j=1

ϕ(zj , y)

(x− zj)k+1
=

1

(x− y)k+1

1 + g

((y
γ

)N)
+

k∑
j=0

(y − x)j

j!

dj

dxj
g

((γ
x

)N) .275

That is, (2.7) holds for d = k + 1. By induction, (2.7)–(2.8) are true for any positive276

integer d.277

With the analytical expression (2.8) we can give a rigorous upper bound for the278

approximation error.279
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Theorem 2.3. Suppose 0 < |x| < γ1 < γ < |y|. With all the assumptions280

in Theorem 2.2, there exists a positive integer N1 such that for any N > N1, the281

approximation error (2.8) is bounded by282

(2.9) |ε(x, y)| ≤ g
(∣∣∣y
γ

∣∣∣N)+ c g

(∣∣∣γ
x

∣∣∣N) ,283

where c = 1 if d = 1, and otherwise,284

(2.10) c = 2 + 2

d−1∑
j=1

[(|y/x|+ 1)N ]j(2d)j−1

j!
.285

Proof. For any positive integer N ,286 ∣∣∣∣g((yγ)N
)∣∣∣∣ = 1

|(y/γ)N − 1|
≤ 1

|y/γ|N − 1
= g

(∣∣∣y
γ

∣∣∣N) .287

Thus, we only need to prove the following bound:288

(2.11)

∣∣∣∣∣∣
d−1∑
j=0

(y − x)j

j!

dj

dxj
g

((γ
x

)N)∣∣∣∣∣∣ ≤ c g
(∣∣∣γ
x

∣∣∣N) .289

When d = 1, it’s easy to verify that the above inequality holds for c = 1 and any290

positive integer N . We now consider the case when d ≥ 2.291

It can be verified that, for any positive integer i,292

(2.12)
d

dx
gi
((γ

x

)N)
=
iN

x

[
gi
((γ

x

)N)
+ gi+1

((γ
x

)N)]
,293

where gi denotes function g raised to power i. Hence, the derivatives appearing in294

(2.11) all have the following form:295

(2.13)
dj

dxj
g

((γ
x

)N)
=

1

xj

j+1∑
i=1

α
(j)
i gi

((γ
x

)N)
,296

where α
(j)
i (1 ≤ i ≤ j + 1, 0 ≤ j ≤ d− 1) are constants.297

We claim that, when N > d and for any 0 ≤ j ≤ d− 1, there exit constants β(j)298

dependent on d so that299

|α(j)
i | ≤ β

(j)N j , 1 ≤ i ≤ j + 1.300

This claim can be proved by induction on j. It is obviously true when j = 0, and301

β(0) = 1 in this case. When j = 1, (2.12) means that the claim is true with α
(1)
1 =302

α
(1)
2 = N and β(1) = 1. Suppose the claim holds for j = k with 1 ≤ k ≤ d− 2 (where303
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10 LOW-RANK COMPRESSION VIA PROXY POINT SELECTION

we also assume d > 2, since otherwise the claim is already proved). Then304

dk+1

dxk+1
g

((γ
x

)N)
=

d

dx

(
1

xk

k+1∑
i=1

α
(k)
i gi

((γ
x

)N))
305

= − k

xk+1

k+1∑
i=1

α
(k)
i gi

((γ
x

)N)
+

1

xk

k+1∑
i=1

α
(k)
i

iN

x

[
gi
((γ

x

)N)
+ gi+1

((γ
x

)N)]
306

(by (2.12))307

=
1

xk+1

[
(N − k)α(k)

1 g

((γ
x

)N)
+

k+1∑
i=2

(
(iN − k)α(k)

i +N(i− 1)α
(k)
j−1

)
gi
((γ

x

)N)
308

+N(k + 1)α
(k)
k+1g

k+2

((γ
x

)N)]
.309

310

Thus, the coefficients satisfy the following recurrence relation311

α
(k+1)
i =


(N − k)α(k)

1 , i = 1,

(iN − k)α(k)
i +N(i− 1)α

(k)
i−1, 2 ≤ i ≤ k + 1,

N(k + 1)α
(k)
k+1, i = k + 2.

312

Therefore, when N > d, we can pick (conservatively)313

(2.14) β(k+1) = 2dβ(k),314

so that |α(k+1)
i | ≤ β(k+1)Nk+1. That is, the claim holds for j = k+1 and this finishes315

the induction.316

Now, we go back to prove (2.11). By (2.13),317

∣∣∣∣∣∣
d−1∑
j=0

(y − x)j

j!

dj

dxj
g

((γ
x

)N)∣∣∣∣∣∣ =
∣∣∣∣∣∣
d−1∑
j=0

[
(y − x)j

j!

1

xj

j+1∑
i=1

α
(j)
i gi

((γ
x

)N)]∣∣∣∣∣∣
(2.15)

318

≤
d−1∑
j=0

[
(|y/x|+ 1)j

j!

j+1∑
i=1

|α(j)
i | g

i

(∣∣∣γ
x

∣∣∣N)] ≤ d−1∑
j=0

[
(|y/x|+ 1)j

j!
β(j)N j

j+1∑
i=1

gi
(∣∣∣γ
x

∣∣∣N)] .319

320

Set321

(2.16) N1 = max{d, ⌈log 3/ log |γ1/x|⌉}.322

Then for N > N1, |γ/x|N > |γ1/x|N > 3 and g
(
|γ/x|N

)
< 1/2. Thus, for 1 ≤ j ≤323

d− 1,324

j+1∑
i=1

gi
(∣∣∣γ
x

∣∣∣N) ≤ 2g

(∣∣∣γ
x

∣∣∣N) .325

Continuing on (2.15), for N > N1, we get326

(2.17)∣∣∣∣∣∣
d−1∑
j=0

(y − x)j

j!

dj

dxj
g

((γ
x

)N)∣∣∣∣∣∣ ≤ cg
(∣∣∣γ
x

∣∣∣N) , with c = 2

d−1∑
j=0

(|y/x|+ 1)j

j!
β(j)N j .327
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Note that with the way β(j) is picked as in (2.14), β(j) satisfies328

β(j) = (2d)j−1β(1) = (2d)j−1, j = 1, 2, . . . , d− 1.329

Then c in (2.17) becomes (2.10). Thus, (2.11) holds with c in (2.10).330

The upper bound (2.9) in Theorem 2.3 has two implications.331

• Since g(|y/γ|N ) and g(|γ/x|N ) decay almost exponentially with N and c is332

just a polynomial in N , d, and |y/x| with degrees up to d− 1, the bound in333

(2.9) decays roughly exponentially as N increases.334

• The bound can help us identify a nearly optimal radius γ of the proxy surface335

Γ so as to minimize the error. This is given in the following theorem.336

Theorem 2.4. Suppose 0 < |x| < γ1 < |y| and κ(x, y) in (1.3) is approximated337

by κ̃(x, y) in (2.3) with (2.4). If the upper bound in (2.9) is viewed as a real function338

in γ on the interval (|x|, |y|), then there exists a positive integer N2 independent of γ,339

such that for N > N2,340

1. this upper bound has a unique minimizer γ∗ ∈ (|x|, |y|);341

2. the minimum of this upper bound decays asymptotically as O
(
|y/x|−N/2

)
.342

Proof. To find the minimizer, we just need to consider the real function343

h(t) =
1

b/t− 1
+

c

t/a− 1
, t ∈ (a, b),344

where a = |x|N , b = |y|N , and c is either equal to 1 (for d = 1) or defined in (2.10)345

(for d ≥ 2). The derivative of the function is346

h′(t) =
p(t)

(t− a)2(t− b)2
, with p(t) = (b− ac)t2 + 2ab(c− 1)t+ ab(a− bc).347

Consider p(t), which is a quadratic polynomial in t with the following properties.348

• The coefficient of the second order term is349

b− ac = |x|N
(
|y/x|N − c

)
.350

Since c is either equal to 1 (for d = 1) or a polynomial in N , d, and |y/x| with351

degrees up to d−1 (for d ≥ 2), there exists N2 larger than N1 in Theorem 2.3352

such that |y/x|N > c for any N > N2. Thus, b− ac > 0 for N > N2.353

• The discriminant is 4abc(a− b)2 > 0.354

• When evaluated at t = a and t = b, the function p(t) gives respectively355

p(a) = −ac(a− b)2 < 0, p(b) = b(a− b)2 > 0.356

All the properties above combined indicate that p(t) has one root t0 ∈ (a, b) and357

h′(t) < 0 on (a, t0) and h
′(t) > 0 on (t0, b). Thus, t0 is the only zero of p(t) in [a, b]358

and γ∗ =
N√
t0 is the unique minimizer of the upper bound in (2.9). The requirements359

for picking N2 are N2 > N1 and |y/x|N2 > c. Hence, N2 is independent of γ.360

To prove the second part of the theorem, we explicitly compute the root t0 of361

p(t) = 0 in (a, b) and substitute it into h(t) to get362

h(t0) =
2
√
cb/a+ (c+ 1)

b/a− 1
=

2
√
c|y/x|N/2 + (c+ 1)

|y/x|N − 1
∼ O

(∣∣∣y
x

∣∣∣−N/2
)
,363

The details involve tedious algebra and are omitted here.364
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12 LOW-RANK COMPRESSION VIA PROXY POINT SELECTION

In the proof, we can actually find the minimizer but are not explicitly writing it365

out. The reason is that the minimizer depends on x and y and it makes more sense366

to write a minimizer later when we consider the low-rank approximation of the kernel367

matrix. See the next section.368

3. Low-rank approximation accuracy and proxy point selection in the369

proxy point method for kernel matrices. With the kernel κ(x, y) in (1.3) ap-370

proximated by κ̃(x, y) in (2.3), a low-rank approximation to K(X,Y ) in (1.2) as follows371

is obtained:372

(3.1) K(X,Y ) ≈ K̃(X,Y ) := (κ̃(x, y)x∈X,y∈Y ) = K(X,Z)Φ(Z,Y ),373

where Φ(Z,Y ) = (ϕ(z, y)z∈Z,y∈Y ). The analysis in subsection 2.2 provides entrywise374

approximation errors for (3.1) (with implicit dependence on x). Now, we consider375

normwise approximation errors for K(X,Y ) and obtain relative error bounds indepen-376

dent of the specific x and y points. The error analysis will be further used to estimate377

the optimal choice of the radius γ for the proxy surface in the low-rank approximation.378

We look at the cases d = 1 and d ≥ 2 separately.379

3.1. The case d = 1. In this case, the proof of Theorem 2.2 for d = 1 gives an380

explicit expression for the entrywise approximation error381

(3.2) ε(x, y) = g

((γ
x

)N)
+ g

((y
γ

)N)
.382

We then have the following result on the low-rank approximation error in Frobenius383

norm.384

Proposition 3.1. Suppose d = 1 and κ(x, y) in (1.3) is approximated by κ̃(x, y)385

in (2.3) with (2.4). If 0 < |x| < γ1 < γ < γ2 < |y| for all x ∈ X, y ∈ Y , then for any386

N > 0,387

(3.3)
∥K̃(X,Y ) −K(X,Y )∥F

∥K(X,Y )∥F
≤ g

(( γ
γ1

)N)
+ g

((γ2
γ

)N)
.388

Moreover, if the upper bound on the right-hand side is viewed as a function in γ, it has389

a unique minimizer γ∗ =
√
γ1γ2 and the minimum is 2g

(
(γ2/γ1)

N/2
)
which decays390

asymptotically as O
(
|γ2/γ1|−N/2

)
.391

Proof. The approximation error bound (3.3) is a direct application of the entry-392

wise error in (3.2) together with the fact that g(t) monotonically decreases for t > 1.393

To find the minimizer of the right-hand side of (3.3), we can either follow the394

proof in Theorem 2.4 or simply use the following explicit expression:395

g
(
(γ/γ1)

N
)
+ g

(
(γ2/γ)

N
)
=

1

(γ/γ1)N − 1
+

1

(γ2/γ)N − 1
396

= −1 + (γ2/γ1)
N − 1

(γ2/γ1)N + 1− ((γ/γ1)N + (γ2/γ)N )
.397

398

We just need to minimize (γ/γ1)
N + (γ2/γ)

N , which reaches its minimum at γ∗ =399 √
γ1γ2.400

Remark 3.2. Although it is not easy to choose γ to minimize the approximation401

error directly, the minimizer γ∗ for the bound in (3.3) can serve as a reasonable402
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estimate of the minimizer for the error. These can be seen from an intuitive numerical403

example below. In addition, the minimum 2g
(
(γ2/γ1)

N/2
)
of the bound in (3.3)404

decays nearly exponentially as N increases. Thus, to reach a relative approximation405

accuracy τ , we can conveniently decide the number of proxy points:406

N = O
(

log(1/τ)

log(γ2/γ1)

)
.407

Clearly, N does not depend on the number of points or the geometries of X,Y . It408

only depends on τ and γ2/γ1 which indicates the separation of X and Y . This is409

consistent with the conclusions in the FMM context [36].410

Example 1. We use an example to illustrate the results in Proposition 3.1 for411

d = 1. The points in X and Y are uniformly chosen from their corresponding regions412

and are plotted in Figure 3.1a, where m = |X| = 200, n = |Y | = 300, γ1 = 0.5,413

γ2 = 2, and γ3 = 5.414

First, we fix the number of proxy points N = 20 and let γ vary. We plot the415

actual error EN (γ) := ∥K̃(X,Y ) −K(X,Y )∥F /∥K(X,Y )∥F and the error bound in (3.3).416

See Figure 3.1b. We can see that both plots are V-shape lines and the error bound417

is a close estimate of the actual error. Moreover, the bound nicely captures the error418

behavior, and the actual error reaches its minimum almost at the same location where419

the error bound is minimized: γ∗ =
√
γ1γ2 = 1. Thus, γ∗ is a nice choice to minimize420

the error. The proxy points Z with radius γ∗ are plotted in Figure 3.1a.421

Then in Figure 3.1c, we fix γ = γ∗ and let N vary. Again, the error bound422

provides a nice estimate for the error. Furthermore, both the error and the bound423

decay exponentially like O
(
|γ2/γ1|−N/2

)
= O(2−N ).424

3.2. The case d ≥ 2. In this case, there is no simple explicit formula for ε(x, y)425

like in (3.2). The results in Theorems 2.3 and 2.4 cannot be trivially extended to426

study the normwise error either since no lower bound is imposed on |x| in |y/x|.427

Nevertheless, we can derive a bound as follows.428

Proposition 3.3. Suppose d ≥ 2 and κ(x, y) in (1.3) is approximated by κ̃(x, y)429

in (2.3) with (2.4). If 0 < |x| < γ1 < γ < γ2 < |y| < γ3 for all x ∈ X, y ∈ Y , then430

there exists a positive integer N3 independent of γ such that for N > N3,431

(3.4)
∥K̃(X,Y ) −K(X,Y )∥F

∥K(X,Y )∥F
≤ g

((γ2
γ

)N)
+ ĉ g

(( γ
γ1

)N)
.432

where433

(3.5) ĉ = 2 + 2

d−1∑
j=1

[(|γ3/γ1|+ 1)N ]j(2d)j−1

j!
.434

Moreover, if the upper bound in (3.4) is viewed as a real function in γ on the interval435

(γ1, γ2), then436

1. this upper bound has a unique minimizer437

(3.6) γ∗ =

(
(γN2 − γN1 )

√
(γ1γ2)N ĉ− (γ1γ2)

N (ĉ− 1)

γN2 − γN1 ĉ

)1/N

∈ (γ1, γ2);438

2. the minimum of this upper bound decays asymptotically as O
(
|γ2/γ1|−N/2

)
.439
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-5 0 5
-5

0

5

(a) Sets X and Y with γ1 = 0.5, γ2 = 2, γ3 = 5 and
proxy points Z selected with radius γ∗ = 1

0.5 1 1.5 2
10 -8

10 -6

10 -4

10 -2

10 0

(b) Varying proxy surface radius γ

5 10 15 20 25 30
N

10 -10

10 -5

10 0

(c) Varying number of proxy points N

Fig. 3.1. Example 1: For d = 1, the selection of the proxy points and the actual relative error
EN (γ) compared with its upper bound in Proposition 3.1 for different γ and N .

Proof. Following the proof of Theorem 2.4, we can set N3 to be the maximum of440

N2 in Theorem 2.4 for all x ∈ X. Based on the entrywise error bound in (2.9), we441

can just show the following inequalities for N > N3 and any x ∈ X, y ∈ Y :442

g

(∣∣∣y
γ

∣∣∣N) < g

((γ2
γ

)N)
, cg

(∣∣∣γ
x

∣∣∣N) < ĉ g

(( γ
γ1

)N)
.443

The first inequality is obvious. We then focus on the second one. Just for the purpose444

of this proof, we write c in (2.10) as c(|x|, |y|) to indicate its dependency on |x| and445

|y|. c(|x|, |y|) can be viewed as a degree-(d − 1) polynomial in 1/|x| and |y| with all446

positive coefficients.447

Write448

c(|x|, |y|) g
(∣∣∣γ
x

∣∣∣N) =
[
c(|x|, |y|)|x|d−1

] [
g

(∣∣∣γ
x

∣∣∣N) |x|1−d

]
.449

The first term c(|x|, |y|)|x|d−1 is a polynomial in |x| with all positive coefficients and450

increases with |x|. The second term is451

g

(∣∣∣γ
x

∣∣∣N) |x|1−d =
|x|N−d+1

γN − |x|N
.452
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With N > N3, it can be shown that this term is also strictly increasing in |x| for453

0 < |x| < γ1 < γ.454

Thus for any x ∈ X, y ∈ Y ,455

c(|x|, |y|) g
(∣∣∣γ
x

∣∣∣N) < c(γ1, |y|) g
(∣∣∣ γ
γ1

∣∣∣N) < c(γ1, γ3) g

(∣∣∣ γ
γ1

∣∣∣N) = ĉ g

(∣∣∣ γ
γ1

∣∣∣N) ,456

where the constant ĉ is defined in (3.5) which is c in (2.10) with |y/x| replaced by457

γ3/γ1.458

The minimizer γ∗ in (3.6) for the upper bound is the root of a quadratic polyno-459

mial in (γ1, γ2) and can be obtained following the proof of Theorem 2.4.460

Based on this corollary, we can draw conclusions similar to those in Remark 3.2.461

In addition, although γ3 is needed so that Y is on a bounded domain in order to462

derive the error bound (3.4), we believe such an limitation is not needed in practice.463

In fact, the analytical compression tends to be more accurate when the points y are464

farther away from the set X. Also, if γ3 is too large, then we may slightly shift the x465

points to make sure |x| is larger than a positive number γ0 so as to similarly derive466

an error bound using γ0 instead of γ3.467

3.3. A practical method to estimate the optimal radius γ. In Proposi-468

tions 3.1 and 3.3, the upper bounds are used to estimate the optimal choice of γ for469

the radius of the proxy surface. In practice, it is possible that the upper bound may470

be conservative, especially when d > 1. Thus, we also propose the following method471

to quickly obtain a numerical estimate of the optimal choice.472

In Propositions 3.1 and 3.3, the optimal γ∗ is independent of the number of points473

in X and Y and their distribution. This feature motivates the idea to pick subsets474

X0 ⊂ D(0; γ1) and Y0 ⊂ A(0; γ2, γ3) and use them to estimate the actual error. That475

is, we would expect the following two quantities to have similar behaviors when γ476

varies in (γ1, γ2):477

(3.7) E0N (γ) :=
∥K(X0,Y0) − K̃(X0,Y0)∥F

∥K(X0,Y0)∥F
, EN (γ) :=

∥K(X,Y ) − K̃(X,Y )∥F
∥K(X,Y )∥F

.478

E0N (γ) can be used as an estimator of the actual approximation error EN (γ). Note479

that K(X0,Y0) and K̃(X0,Y0) are computable through (1.3) and (2.3), respectively, so480

E0N (γ) can be computed explicitly, and the cost is extremely small if |X0| ≪ |X| and481

|Y0| ≪ |Y |.482

Note that in rank-structured matrix computations, often an admissible condition483

or separation parameter is prespecified for the compression of multiple off-diagonal484

blocks. In the case of kernel matrices, it means that the process of estimating the485

optimal γ needs to be run only once and can then be used in multiple compression486

steps.487

Example 2. We use an example to demonstrate the numerical selection of the488

optimal γ. Consider d = 2, 3 and the two sets X and Y in Example 1 with the same489

values γ1, γ2, γ3 (see Figure 3.1a). Fix N = 30.490

For the sets X0 and Y0 we choose, we set l = |X0| = |Y0| to be 1, 2, or 3. We make491

sure x = γ1 and y = γ2 as points of C are always in X0 and Y0, respectively. These two492

boundary points correspond to the worst case scenarios of the error bound developed493

before. Thus, E0N (γ) is more likely to capture the behavior of EN (γ). Any additional494

points in X0 are uniformly distributed in the circle C(0; γ1) and any additional points495

in Y0 are uniformly distributed in C(0; γ2).496
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(a) d = 2

0.5 1 1.5 2

10 -5

10 0

(b) d = 3

1.04 1.06 1.08 1.1 1.12

10 -8

10 -7

(c) d = 2, zoomed in around the critical point

1.1 1.12 1.14 1.16 1.18 1.2

10 -7

10 -6

(d) d = 3, zoomed in around the critical point

Fig. 3.2. Example 2: For d = 2 and 3, how the estimator E0
N (γ) with l = 1, 2, 3 compare with

the actual error EN (γ).

With l = 1, both EN (γ) and E0N (γ) are plotted. See Figures 3.2a and 3.2b for497

d = 2 and 3, respectively. We can see that E0N (γ) already gives a good estimate of498

the behavior of EN (γ) for both cases. Then in Figures 3.2c and 3.2d we plot E0N (γ)499

for l = 1, 2, 3 and zoom in at around the minimum since they almost coincide with500

each other away from the minimum. The minimums of the three cases are very close501

to each other, which indicates that l = 1 suffices to give a reliable estimate of the502

optimal radius in practice.503

4. Low-rank approximation accuracy in hybrid compression and rep-504

resentative point selection. The analytical compression in section 3 can serve as505

a preliminary low-rank approximation, which is typically followed by an algebraic506

compression step to get a more compact low-rank approximation. In this section,507

we analyze the approximation error of such hybrid (analytical/algebraic) compression508

applied to K(X,Y ).509

Suppose m = |X| and n = |Y | are sufficiently large and N = |Z| is fixed. With510

the preliminary low-rank approximation in (3.1), since K(X,Z) has a much smaller511

column size than K(X,Y ), it becomes practical to apply an SRRQR factorization to512

K(X,Z) to obtain the following approximation:513

(4.1) K(X,Z) ≈ UK(X,Z)|J , with U = P

(
I
E

)
,514
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where P is a permutation matrix so that K(X,Z)|J is formed by selected rows of515

K(X,Z) with the row index set J . J essentially corresponds to a subset X̂ ⊂ X and X̂516

can be referred to as a set of representative points of X so that K(X̂,Z) ≡ K(X,Z)|J .517

(4.1) is an interpolative decomposition of K(X,Z). It is also referred to as a structure-518

preserving rank-revealing (SPRR) factorization in [42] since K(X̂,Z) is a submatrix of519

K(X,Z).520

Although U generally does not have orthonormal columns, the SRRQR factor-521

ization keeps its norm under control in the sense that entries of E have magnitudes522

bounded by a number e (e.g., 2 or
√
N). See [15] for details.523

We then have524

K(X,Y ) ≈ K̃(X,Y ) = K(X,Z)Φ(Z,Y ) (by (3.1))(4.2a)525

≈ UK(X̂,Z)Φ(Z,Y ) (by (4.1))(4.2b)526

= UK̃(X̂,Y ) ≈ UK(X̂,Y ), (by (2.3) and similar to (3.1))(4.2c)527528

which is an SPRR factorization of K(X,Y ).529

Similarly, an SRRQR factorization can further be applied to K(X̂,Y ) to produce530

(4.3) K(X̂,Y ) ≈ K(X̂,Ŷ )V T , with V = Q

(
I
F

)
,531

where Q is a permutation matrix and Ŷ ⊂ Y . The approximation (4.2) together with532

(4.3) essentially enables us to quickly to select representative points from both X and533

Y . In another word, we have a skeleton factorization of K(X,Y ) as534

(4.4) K(X,Y ) ≈ UK(X̂,Ŷ )V T .535

Note that computing an SPRR or skeleton factorization for K(X,Y ) directly (or to536

find a submatrix K(X̂,Ŷ ) with the largest “volume” [11, 38]) is typically prohibitively537

expensive for large m and n. Here, the proxy point method substantially reduces the538

cost. In fact, (4.2a) and (4.2c) are done analytically with no compression cost. Only539

the SRRQR factorizations of skinny matrices (K(X,Z) and/or K(X̂,Y )) are needed.540

The total compression cost is O(mNr) for (4.2) or O(mNr + nr2) for (4.4) instead541

of O(mnr), where r = |X̂| ≥ |Ŷ |. As we have discussed before, N is only a constant542

independent of m and n. Thus, this procedure is significantly more efficient than543

applying SRRQR factorizations directly to the original kernel matrix.544

The next theorem concerns the approximation error of the hybrid compression545

via either (4.2) or (4.4).546

Theorem 4.1. Suppose 0 < |x| < γ1 < γ < γ2 < |y| < γ3 for any x ∈ X, y ∈ Y547

and the N proxy points in Z are located on the proxy surface with radius γ∗. Let r =548

|X| and let the relative tolerance in the kernel approximation be τ1 (i.e., |ε(x, y)| < τ1549

for ε(x, y) in (2.7)) and the relative approximation tolerance (in Frobenius norm) in550

the SRRQR factorizations (4.1) and (4.3) be τ2. Assume the entries of E in (4.1)551

and F in (4.3) have magnitudes bounded by e. Then the approximation of K(X,Y ) by552

(4.2) satisfies553

(4.5)
∥K(X,Y ) − UK(X̂,Y )∥F

∥K(X,Y )∥F
< s1τ1 + s2τ2,554
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where555

s1 = 1 +
√
r + (m− r)re2

√
1− (m− r)(γ2 − γ1)2d

m(γ1 + γ3)2d
, s2 =

γ∗(γ1 + γ3)
d

(γ2 − γ∗)(γ∗ − γ1)d
.556

557

The approximation of K(X,Y ) by (4.4) satisfies558

(4.6)
∥K(X,Y ) − UK(X̂,Ŷ )V T ∥F

∥K(X,Y )∥F
< s1τ1 + s̃2τ2,559

where s̃2 = s2 + s1 − 1.560

Proof. The following inequalities for x ∈ X, y ∈ Y, z ∈ Z will be useful in the561

proof:562

|ϕ(z, y)| < γ∗

N(γ2 − γ∗)
,(4.7)563

|κ(x, z)| < 1

(γ∗ − γ1)d
,(4.8)564

1

(γ1 + γ3)d
< |κ(x, y)| < 1

(γ2 − γ1)d
.(4.9)565

566

Note that567

∥K(X,Y ) − UK(X̂,Y )∥F(4.10)568

≤ ∥K(X,Y ) − K̃(X,Y )∥F + ∥K̃(X,Y ) − UK(X̂,Y )∥F569

≤ ∥K(X,Y ) − K̃(X,Y )∥F + ∥K̃(X,Y ) − UK̃(X̂,Y )∥F + ∥UK̃(X̂,Y ) − UK(X̂,Y )∥F570

= ∥K(X,Y ) − K̃(X,Y )∥F + ∥K(X,Z)Φ(Z,Y ) − UK(X̂,Z)Φ(Z,Y )∥F571

+ ∥UK̃(X̂,Y ) − UK(X̂,Y )∥F (by (4.2a)–(4.2c))572

≤ ∥K(X,Y ) − K̃(X,Y )∥F + ∥K(X,Z) − UK(X̂,Z)∥F ∥Φ(Z,Y )∥F573

+ ∥U∥F ∥K(X̂,Y ) − K̃(X̂,Y )∥F .574575

Now, we derive upper bounds separately for the three terms in the last step above.576

The first term is the approximation error for the original kernel matrix from the577

proxy point method. Then578

(4.11) ∥K(X,Y ) − K̃(X,Y )∥F ≤ τ1∥K(X,Y )∥F .579

Next, from the SPRR factorization of K(X,Z),580

∥K(X,Z) − UK(X̂,Z)∥F ∥Φ(Z,Y )∥F ≤ τ2∥K(X,Z)∥F ∥Φ(Z,Y )∥F .581

(4.7) means582

∥Φ(Z,Y )∥F <
√
Nn

γ∗

N(γ2 − γ∗)
=

√
n

N

γ∗

γ2 − γ∗
.583

(4.8) and (4.9) mean584

∥K(X,Z)∥2F
∥K(X,Y )∥2F

<
mN/(γ∗ − γ1)2d

mn/(γ1 + γ3)2d
=
N

n

(γ1 + γ3)
2d

(γ∗ − γ1)2d
.585
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Then586

∥K(X,Z) − UK(X̂,Z)∥F ∥Φ(Z,Y )∥F < τ2

√
n

N

γ∗

γ2 − γ∗
∥K(X,Z)∥F(4.12)587

< τ2
γ∗(γ1 + γ3)

d

(γ2 − γ∗)(γ∗ − γ1)d
∥K(X,Y )∥F .588

589

Thirdly,590

∥U∥F =

∥∥∥∥P ( IE
)∥∥∥∥

F

=

∥∥∥∥( IE
)∥∥∥∥

F

≤
√
r + (m− r)re2,591

∥K(X̂,Y ) − K̃(X̂,Y )∥F ≤ τ1∥K(X̂,Y )∥F .592593

According to (4.9),594

∥K(X̂,Y )∥2F
∥K(X,Y )∥2F

= 1− ∥K
(X\X̂,Y )∥2F
∥K(X,Y )∥2F

≤ 1− (m−r)n/(γ1+γ3)2d

mn/(γ2 − γ1)2d
= 1− (m−r)(γ2−γ1)2d

m(γ1 + γ3)2d
.595

Then596

∥U∥F ∥K(X̂,Y ) − K̃(X̂,Y )∥F(4.13)597

≤ τ1
√
r + (m− r)re2

√
1− (m− r)(γ2 − γ1)2d

m(γ1 + γ3)2d
∥K(X,Y )∥F .598

599

Combining the results (4.11)–(4.13) from the four steps above yields (4.5). To600

show (4.6), we use the following inequality:601

∥K(X,Y ) − UK(X̂,Ŷ )V T ∥F602

≤ ∥K(X,Y ) − K̃(X,Y )∥F + ∥K(X,Z)Φ(Z,Y ) − UK(X̂,Z)Φ(Z,Y )∥F603

+ ∥UK̃(X̂,Y ) − UK(X̂,Y )∥F + ∥UK(X̂,Y ) − UK(X̂,Ŷ )V T ∥F .604605

Then the proof can proceed similarly.606

If e in SRRQR factorizations is a constant, with fixed N , the two constants in607

(4.5) scale roughly as s1 = O(
√
m) and s2 = O(1). Moreover, once the annulus region608

A(0; γ2, γ3) is fixed, the set Y is completely irrelevant to the algorithm for obtaining609

the approximation (4.2) and the error bound (4.5). The column basis matrix U and610

the set X̂ of representative points can be obtained with only the set X, and the error611

analysis in (4.5) applies to any set Y in A(0; γ2, γ3).612

Remark 4.2. Note that our error analyses in the previous section and this sec-613

tion are not necessarily restricted to the particular kernel like in (1.3) or the proxy614

point approximation method. In fact, the error bounds can be easily modified for615

more general kernels and/or with other approximation methods as long as a relative616

error bound for the kernel function approximation is available. This bound is τ1 in617

Theorem 4.1.618

We then use a comprehensive example to show the accuracies of the analytical619

compression and the hybrid compression, as well as the selections of the proxy points620

and the representative points.621

Example 3. We generate a triangular finite element mesh on a rectangle domain622

[0, 2]× [0, 1] based on the package MESHPART [10]. The two sets of points X and Y623
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are the mesh points as shown in Figure 4.1, where |X| = 821, |Y | = 4125, γ1 = 0.3,624

and γ2 = 0.45. We compute the low-rank approximation in (4.2) and report the rela-625

tive errors in the analytical compression step and the hybrid low-rank approximation626

respectively:627

EN (γ) =
∥K(X,Y ) − K̃(X,Y )∥F

∥K(X,Y )∥F
, RN (γ) =

∥K(X,Y ) − UK(X̂,Y )∥F
∥K(X,Y )∥F

.628

Fig. 4.1. Example 3: Sets X and Y in the mesh, where the image is based on the package
MESHPART [10].

629

In the first set of tests, the number of proxy points N is chosen to reach a rela-630

tive tolerance τ1 = 10εmach in the proxy point method, where εmach is the machine631

precision. (Note that τ1 is the tolerance for approximating κ(x, y), and the actual632

computed Frobenius-norm matrix approximation error EN (γ) may be slightly larger633

due to floating point errors.)634

We vary the radius γ for the proxy surface between γ1 and γ2. For d = 1, 2, 3, 4,635

EN (γ) and RN (γ) are shown in Figure 4.2. In practice, we can use the method636

in subsection 3.3 to obtain an approximate optimal radius γ̃∗. To show that γ̃∗637

is very close to the actual optimal radius, we can look at Figure 4.2a for d = 1.638

Here, N = 169 and γ̃∗ = 0.3675 which is very close to the actual optimal radius639

0.3678. In addition, the error bound in Proposition 3.1 can be used to provide another640

estimate
√
γ1γ2 = 0.3674. Both estimates are very close to the actual minimizer,641

which indicates the effectiveness of the error analysis and the minimizer estimations.642

When γ = γ̃∗, we have EN (γ) = 3.2106E − 16 and RN (γ) = 1.1008E − 15, and643

the numerical rank resulting from the hybrid compression is 78. The numerical rank644

produced by SVD under a similar relative error is 68.645

Similar results are obtained for d = 2, 3, 4. See Figure 4.2 and Table 4.1. (We646

notice that EN (γ) is sometimes larger than RN (γ), especially when γ is closer to X or647

Y . This is likely due to the different amount of evaluations of the kernel function in648

the error computations. The kernel function evaluations may have higher numerical649

errors when γ gets closer to γ1 or γ2. When γ is not too close to γ1 or γ2, RN (γ)650

is smaller than EN (γ), which is consistent with the theoretical estimates. Here, no651

stabilization is integrated into the proxy point method (which may be fixed based on652
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Fig. 4.2. Example 3: EN (γ) in the analytical compression step and RN (γ) in the hybrid
low-rank approximation with varying radius γ.

a technique in [3]), while SRRQR factorizations have full stability measurements and653

produce column basis matrices with controlled norms. On the other hand, this also654

reflects that hybrid compression is a practical method.)655

Table 4.1
Example 3: Hybrid compression results, where γ̃∗ is the approximate optimal radius.

d N Optimal γ γ̃∗ Numerical rank EN (γ̃∗) RN (γ̃∗)
1 169 0.3678 0.3675 78 3.2106E − 16 1.1008E − 15
2 179 0.3733 0.3713 88 1.0431E − 15 2.1817E − 15
3 187 0.3774 0.3759 93 2.3565E − 15 2.0537E − 14
4 193 0.3816 0.3792 99 8.9381E − 15 7.5528E − 14

Also in Figure 4.3 for d = 1, 2, we plot the proxy points as well as the represen-656

tative points X̂ produced by the hybrid approximation with γ = γ̃∗.657

In our next set of tests, we vary the number of proxy points N for the analytical658

compression step and check its effect on the hybrid low-rank approximation error. For659

each N , the radius of the proxy surface γ is set to be γ̃∗. The results are shown in660

Figure 4.4. The approximation error for the analytical compression decays exponen-661

tially as predicted by Propositions 3.1 and 3.3 (until N reaches the values indicated662
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(a) d = 1 (b) d = 2

Fig. 4.3. Example 3: Representative points (+ shapes) and proxy points (× shapes).

in Table 4.1; after that point, it stops to decay due to floating point errors).663

5. Conclusions. The proxy point method is a very simple and convenient strat-664

egy for computing low-rank approximations for kernel matrices evaluated at well-665

separated sets. In this paper, we present an intuitive way of explaining the method.666

Moreover, we provide rigorous approximation error analysis for the kernel function667

approximation and low-rank kernel matrix approximation in terms of a class of impor-668

tant kernels. Based on the analysis, we show how to choose nearly optimal locations669

of the proxy points. The work can serve as a starting point to study the proxy point670

method for more general kernels and higher dimensions. Some possible strategies in671

future work will be based on other kernel expansions or Cauchy FMM ideas [24].672

Various results here are already applicable to more general kernels and other approx-673

imation methods. We also hope this work can draw more attentions from researchers674

in the field of matrix computations to study and utilize such an elegant method.675

Acknowledgments. The authors would like to thank Steven Bell at Purdue676

University for some helpful discussions.677
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