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SUMMARY

In this work, we provide new analysis for a preconditioning technique called structured incomplete
factorization (SIF) for symmetric positive definite (SPD) matrices. In this technique, a scaling-and-
compression strategy is applied to construct SIF preconditioners, where off-diagonal blocks of the original
matrix are first scaled and then approximated by low-rank forms. Some spectral behaviors after applying
the preconditioner are shown. The effectiveness is confirmed with the aid of a type of 2D and 3D discretized
model problems. We further show that previous studies on the robustness are too conservative. In fact, the
practical multilevel version of the preconditioner has a robustness enhancement effect, and is unconditionally
robust (or breakdown free) for the model problems regardless of the compression accuracy for the scaled
off-diagonal blocks. The studies give new insights into the SIF preconditioning technique and confirm that it
is an effective and reliable way for designing structured preconditioners. The studies also provide useful tools
for analyzing other structured preconditioners. Various spectral analysis results can be used to characterize
other structured algorithms and study more general problems. Copyright c© 2011 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Designing effective and robust preconditioners is typically the key issue in iterative solutions of large

symmetric positive definite (SPD) linear systems. An effective preconditioner can significantly reduce

the number of iterations and thus the computational cost. In the meantime, it is often preferable to

have robust preconditioners that remain positive definite. Various types of robust preconditioners

have been designed [2, 3, 4, 11, 18, 19], where some stabilization strategies are often used.

In recent years, low-rank compression methods have often been used to design effective

preconditioners, and are typically based on the low-rank approximation of certain dense off-diagonal
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blocks. The resulting structured approximations are used as preconditioners. Such structured

preconditioners can be quickly applied and it is convenient to control the accuracy of how they

approximate the original matrix. On the other hand, it is usually nontrivial to analyze the

effectiveness.

Recently, a robust preconditioning technique called structured incomplete factorization (SIF)

is proposed in [24] for SPD matrices. The technique relies on a scaling-and-compression strategy

reformulated from an earlier paper [23]. In the strategy, off-diagonal blocks are not directly

compressed. Instead, they are first scaled by the inverses of the Cholesky factors of relevant diagonal

blocks and the scaled off-diagonal blocks are then approximated by low-rank forms. It is shown

in [23, 24] that the resulting SIF preconditioners have some attractive features. For example,

some effectiveness results can be conveniently shown for the preconditioners and under certain

assumptions, the scaled off-diagonal blocks can be aggressively compressed so as to yield fast and

effective multilevel SIF preconditioners. Practical numerical tests have shown superior convergence

results [24]. The scaling-and-compression strategy is later also followed by a series of other work

[1, 7, 8, 25] for designing structured preconditioners for both dense and sparse matrices. Related

ideas also appear in some work for preconditioning sparse matrices [12, 13, 14, 20].

The analysis in [24] aims at general SPD matrices and ignores specific properties and backgrounds.

Thus, some of the results are very conservative. For example, the analysis in [24] for a multilevel SIF

preconditioner is based on some restrictive robustness requirements. Specifically, the effectiveness and

robustness analysis requires that the matrix is not too ill conditioned, the off-diagonal compression

accuracy is not too low, or the number of levels is not too large. These requirements are needed in

order to guarantee the positive definiteness of the preconditioner. However, the requirements either

limit the applicability of the preconditioner or make the preconditioner too expensive. On the other

hand, many practical tests have shown nice performance even though such requirements are not

met.

In addition, there are two types of SIF preconditioners in [24], one based on Cholesky factorizations

and another based on a so-called ULV factorization [6, 22]. The analysis is done for Cholesky SIF

preconditioning while the implementation is for ULV SIF preconditioning since the latter has better

scalability and stability. The effectiveness of ULV SIF preconditioning is not clear.

In this work, we revisit the analysis for the SIF preconditioning technique and give new insights

into the effectiveness and robustness. Our aim is to provide better understanding of the performance

in terms of both general spectral analysis and studies of some model problems and show that it is

possible to relax the robustness requirements in [24]. The main contributions are as follows.

1. We provide more intuitive studies on the effectiveness of SIF preconditioning, especially some

spectral analysis for ULV SIF preconditioners and show that they are as effective as the

Cholesky SIF preconditioners. This confirms that ULV SIF preconditioners are the better

choice in practice due to the nice stability and scalability.

2. We give concrete illustrations of the effectiveness of SIF preconditioning in terms of a type

of 2D and 3D discretized model problems that has often been used to study some similar

preconditioners in other work [12, 13, 14]. Singular values of the scaled off-diagonal blocks

are derived and are used to show the condition number and eigenvalue distribution after

preconditioning. Explicit forms of the preconditioners are also derived so as to understand

the behaviors of the scaling-and-compression strategy in multilevel SIF preconditioning.

3. Furthermore, our studies indicate that multilevel SIF preconditioning has an implicit Schur

complement compensation effect [10, 23], which can help enhance the robustness of the
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EFFECTIVENESS AND ROBUSTNESS OF SIF PRECONDITIONING 3

resulting preconditioners. In fact, for the model problems, we can show that the requirements

in [24] needed to guarantee positive definiteness are too conservative and may be relaxed.

Actually, the multilevel SIF preconditioners are unconditionally robust or breakdown free for

those problems. That is, the SIF preconditioners remain positive definite regardless of the off-

diagonal compression accuracy and the number of levels. More specifically, in the multilevel

scaling-and-compression strategy, the leading singular values of the scaled off-diagonal blocks

remain unchanged. Such studies give a good indication that SIF preconditioners likely have

much better robustness than predicted in [24].

Our studies give new perspectives for the SIF preconditioning technique and the scaling-and-

compression strategy, and confirm that the technique is an effective and reliable way to design

new structured preconditioners with guaranteed performance. That is, it is beneficial to combine

scaling with off-diagonal compression in the design of structured preconditioners. Our work suggests

that it is feasible to obtain even stronger analysis results for SIF preconditioning applied to

specific applications. It also provides useful tools for analyzing and understanding other structured

preconditioners. Various spectral analysis results can be used to characterize other structured

algorithms and study more general problems. The work also suggests new directions for improving

SIF preconditioning.

Our discussions include three parts. We provide some spectral analysis to illustrate the

effectiveness of SIF preconditioning in Section 2. The effectiveness of SIF preconditioning is further

demonstrated in terms of the model problems in Section 3. Section 4 discusses the robustness of

multilevel SIF schemes. The analysis is also aided by some numerical evidences. To facilitate the

discussions, we list commonly used notation as follows.

• λ(A) denotes an eigenvalue of a symmetric matrix A and λj(A) denotes the jth smallest

eigenvalue of A.

• σj(C) denotes the jth largest singular value of a matrix C.

• κ(A) is the 2-norm condition number of A.

• diag(·) denotes a (block) diagonal matrix with the given (block) diagonals.

• Ir is the r × r identity matrix.

• When an n×n matrix A is partitioned, the partitioning is denoted by the splitting of its index

set {1 : n}. For example, {1 : n} = {1 : n1} ∪ {n1 + 1 : n} denotes a block 2× 2 partitioning

of A with the (1, 1) and (2, 2) diagonal blocks corresponding to the index sets {1 : n1} and

{n1 + 1 : n}, respectively.

2. SPECTRAL ANALYSIS FOR SIF PRECONDITIONING

In this section, we first give a quick review of SIF preconditioning for SPD matrices and then revisit

the effectiveness in terms of some spectral analysis.

2.1. Review of SIF preconditioning for SPD matrices

The SIF preconditioning strategy is built upon a scaling-and-compression strategy [23, 24]. In this

strategy, off-diagonal blocks are first scaled and then compressed so as to justify the effectiveness

and to better control of the performance. The basic idea from [24] is as follows.
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4 JIANLIN XIA

Consider a block 2× 2 SPD matrix

A ≡
(
A11 A12

AT12 A22

)
, (1)

where the two diagonal blocks are assumed to have Cholesky factorizations

Akk = LkL
T
k , k = 1,2. (2)

(Here, bold fonts are used for the subscripts in order to be consistent with later notation.) Then A

can be factorized as

A =

(
L1

L2

)(
I C

CT I

)(
LT1

LT2

)
, with C = L−11 A12L

−T
2 . (3)

Suppose the full SVD of C and its rank-r truncation look like

C =
(
Ũ1 Û1

)( Σ̃1

Σ̂1

)(
ŨT2
ÛT2

)
≈ Ũ1Σ̃1Ũ

T
2 , (4)

where Σ̃1 is a diagonal matrix for the r singular values of C that are supposed to be greater than

or equal to a tolerance τ : σ1(C) ≥ . . . ≥ σr(C) ≥ τ . That is, σr+1(C) ≤ τ is the largest dropped

singular value of C. With the truncated SVD, A can be approximated by

Ã ≡
(
L1

L2

)(
I Ũ1Σ̃1Ũ

T
2

Ũ2Σ̃1Ũ
T
1 I

)(
LT1

LT2

)
.

Then we get a prototype SIF preconditioner

Ã = L̃L̃T , (5)

where

L̃ ≡
(

L1

L2Ũ2Σ̃1Ũ
T
1 L2D̃2

)
, with D̃2D̃

T
2 = I − Ũ2Σ̃2

1Ũ
T
2 . (6)

In practice, a ULV-type factorization [6, 22] is used to enhance the scalability since it avoids

the sequential computation of Schur complements and uses a hierarchical scheme where local

factorizations at each level can be done simultaneously. Let Q1 be an orthogonal matrix constructed

from Ũ1 with Ũ1 as the first r columns and Q2 be constructed similarly from Ũ2. Then (5) becomes

a ULV factorization with L̃ a ULV factor

L̃ =

(
L1

L2

)(
Q1

Q2

)
Π

(
H

I

)
, (7)

where H is the lower triangular Cholesky factor of

(
I Σ̃1

Σ̃1 I

)
and Π is a permutation matrix

used to assemble

(
I Σ̃1

Σ̃1 I

)
like

ΠT

(
I diag(Σ̃1, 0)

diag(Σ̃1, 0) I

)
Π = diag

((
I Σ̃1

Σ̃1 I

)
, I

)
. (8)

Generalization of the prototype preconditioner to practical multilevel schemes is also made in

[24]. The procedure above with 1-level partitioning of A is called a 1-level (or prototype) SIF

scheme. For convenience, we call the preconditioner (5) with the factor in (6) a 1-level Cholesky
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EFFECTIVENESS AND ROBUSTNESS OF SIF PRECONDITIONING 5

SIF preconditioner and (5) with the factor in (7) a 1-level ULV SIF preconditioner. The same idea

may be applied to A11 and A22 to yield approximate factors L̃1 ≈ L1 and L̃2 ≈ L2, respectively. If

L̃1 and L̃2 are used to replace L1 and L2 respectively in the procedure above, then the procedure

is a 2-level SIF scheme. Similarly, a general l-level SIF scheme can be obtained.

The work [24] provides some analysis results on the effectiveness the 1-level Cholesky SIF

preconditioner. It is shown that the preconditioned matrix has a form

L̃−1AL̃−T =

(
I Ĉ

Ĉ I

)
, (9)

where

Ĉ = Û1Σ̂1Û
T
2 D̃

−T
2 , ‖Ĉ‖2 = σr+1(C). (10)

Thus, the 2-norm condition number of the preconditioned matrix is

κ(L̃−1AL̃−T ) =
1 + σr+1(C)

1− σr+1(C)
. (11)

2.2. Spectral analysis for Cholesky and ULV SIF preconditioning

The effectiveness analysis in [24] is done only for the Cholesky SIF scheme in Section 2.1. On the

other hand, the actual implementation is based on the ULV SIF schemes which have better scalability

and stability. Here, we show that both types of schemes are similarly effective and also give a more

intuitive explanation of the effectiveness by extending (10).

Theorem 2.1. Suppose the smaller of the row and column sizes of C in (3) is k. For the Cholesky

SIF factor L̃ in (6), the equation (9) holds with the nonzero singular values of Ĉ in (10) given by

σj(Ĉ) = σr+j(C) ≤ τ, j = 1, 2, . . . , k − r. (12)

For the ULV SIF factor L̃ in (7), we have

L̃−1AL̃−T = diag

(
I,

(
I C̄

C̄ I

))
, (13)

where C̄ is an (k − r)× (k − r) matrix with singular values

σj(C̄) = σr+j(C) ≤ τ, j = 1, 2, . . . , k − r. (14)

Accordingly, for L̃ in either (6) or (7), the eigenvalues of L̃−1AL̃−T are

1, 1± σr+1(C), . . . , 1± σk(C), (15)

where the eigenvalue 1 has multiplicity n− 2(k − r) with n the order of A.

Proof. For L̃ in (6), the proof for (10) [24, Theorem 2.5] already implies (12). That is, any eigenvalue

λ(ĈĈT ) of ĈĈT satisfies

λ(ĈT Ĉ) = λ(D̃−12 Û2Σ̂T1 Σ̂1Û
T
2 D̃

−T
2 ) = λ(D̃−T2 D̃−12 Û2Σ̂T1 Σ̂1Û

T
2 )

= λ
(

(I − Ũ2Σ̃2
1Ũ

T
2 )−1Û2Σ̂T1 Σ̂1Û

T
2

)
= λ(Û2Σ̂T1 Σ̂1Û

T
2 )

∈
{
σ2
r+1(C), . . . , σ2

k(C), 0, . . . , 0
}
,

where the equality in the second line is due to the Sherman-Morrison-Woodbury formula and the

result ŨT2 Û2 = 0.
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Thus, we just focus on the ULV SIF factor L̃ in (7). From (3), we have

L̃−1AL̃−T =

(
H−1

I

)
ΠT

(
QT1

QT2

)(
I C

CT I

)(
Q1

Q2

)
Π

(
H−T

I

)
=

(
H−1

I

)
ΠT

(
I QT1CQ2

QT2C
TQ1 I

)
Π

(
H−T

I

)
.

Based on the construction of Q1 and Q2, we can let Q1 =
(
Ũ1 Q̂1

)
, Q2 =

(
Ũ2 Q̂2

)
. Then

QT1CQ2 =

(
ŨT1
Q̂T1

)(
Ũ1 Û1

)( Σ̃1

Σ̂1

)(
ŨT2
ÛT2

)(
Ũ2 Q̂2

)
=

(
I

Q̂T1 Û1

)(
Σ̃1

Σ̂1

)(
I

ÛT2 Q̂2

)
= diag(Σ̃1, C̄),

where

C̄ = Q̂T1 Û1Σ̂1Û
T
2 Q̂2. (16)

Thus,

L̃−1AL̃−T =

(
H−1

I

)
ΠT

(
I diag(Σ̃1, C̄)

diag(Σ̃1, C̄
T ) I

)
Π

(
H−T

I

)
=

(
H−1

I

)
diag

((
I Σ̃1

Σ̃1 I

)
,

(
I C̄

C̄T I

))(
H−T

I

)
= diag

(
H−1

(
I Σ̃1

Σ̃1 I

)
H−T ,

(
I C̄

C̄T I

))
= diag

(
I,

(
I C̄

C̄T I

))
,

where the second step follows from the definition of Π as in (8).

Then we show (14) for C̄ in (16). Note that Q̂T1 Û1 and Q̂T2 Û2 are orthogonal matrices since, say,

Q̂T1 Û1(Q̂T1 Û1)T = Q̂T1 Û1Û
T
1 Q̂1 = Q̂T1 (I − Ũ1Ũ

T
1 )Q̂1 = Q̂T1 Q̂1 = I,

where we used Q̂T1 Ũ1 = 0. Thus, the singular values of C̄ are the diagonal entries of Σ̂1 and are

σr+1(C), . . . , σk(C). (14) then holds.

The eigenvalues of L̃−1AL̃−T can then be immediately obtained based on (9) or (13).

The theorem has two implications. One is in the understanding of the effectiveness of SIF

preconditioning. If A is preconditioned with just the block diagonal preconditioner diag(A11, A22),

it is known that the preconditioned matrix has eigenvalues 1± σ1(C), . . . , 1± σk(C) and a repeated

eigenvalue 1 of multiplicity n−k. The condition number after preconditioning is 1+σ1(C)
1−σ1(C) . By keeping

the r largest singular values of C in the off-diagonal compression, the r largest (smallest) eigenvalues

1±σ1(C), . . . , 1±σr(C) are mapped to 1. If σj(C) has reasonable decay, then the eigenvalues of the

preconditioned matrix cluster reasonably close to 1. In fact, the scaling of A12 may help enhance the

singular value decay (an example is the model problem that will be considered later; see Remark 2).

Also, the condition number of the preconditioned matrix becomes (11). As pointed out in [24], the

significance of (11) lies in a decay magnification effect. That is, if the singular values σi(C) slightly
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EFFECTIVENESS AND ROBUSTNESS OF SIF PRECONDITIONING 7

decays, then κ(L̃−1AL̃−T ) decays much faster, so that an aggressive truncation of σj(C) leads to a

reasonable condition number. (11) and (15) indicate that SIF preconditioning can improve both the

condition number and the eigenvalue distribution. They also suggest that, to design new effective

structured preconditioners, it is desirable to accelerate the decay of the singular values of the scaled

off-diagonal blocks.

Another implication of the theorem is in terms of the choice between Cholesky and ULV

SIF preconditioners. The eigenvalue distribution is the same after either the Cholesky SIF

preconditioning or the ULV SIF preconditioning. The ULV SIF scheme avoids the computation

of explicit Schur complements and has better scalability. It also mainly uses orthogonal rotations

(like Q1, Q2) in the intermediate factorizations and has better stability. Thus in practical

implementations, ULV SIF preconditioners are preferred. On the other hand, Cholesky SIF

preconditioners are often more convenient for the analysis purpose. Thus in our later analysis, we

then only use the Cholesky SIF scheme.

For general l-level SIF schemes, results similar to (11) can be obtained [24], provided that the SIF

preconditioners remain positive definite. This positive definiteness requirement will be investigated

in Section 4.

3. EFFECTIVENESS OF SIF PRECONDITIONING FOR 2D AND 3D DISCRETIZED

PROBLEMS

We then illustrate the effectiveness of SIF preconditioning via a type of model problems so as to

obtain more concrete estimates. Consider the finite difference discretization of −∆ on 2D or 3D grids

with Dirichlet boundary conditions. 5-point and 7-point stencils are used for the 2D and 3D cases,

respectively. We would like to analyze the performance of SIF preconditioning when it is applied to

the discretized matrix A and give specific effectiveness and robustness estimates.

Analysis for such a model problem is important due to multiple reasons.

1. As already mentioned in [24], multilevel SIF preconditioners can be directly applied to

sparse matrices due to some attractive features. For example, the fast sparse matrix-vector

products can be used to quickly compress scaled off-diagonal blocks like in (3) based on

randomized SVDs [15]. This can help significantly reduce the cost to construct a multilevel SIF

preconditioner from about O(n2) flops in [24] to about O(n) flops. Such randomized structured

approximation is similar to the procedures used in [9, 16, 17, 21]. (Some similar preconditioners

not based on randomization have also been applied to sparse matrices [12, 13, 14].)

2. This model problem is a useful representative discretized problem and can help us gain better

insights into the performance of SIF preconditioning for sparse discretized problems. In fact,

the model problem has often been used to analyze and understand low-rank compression

based multilevel preconditioners in other work [12, 13, 14].

3. This model problem is actually a somewhat challenging problem for standard rank structured

preconditioners based on direct off-diagonal compression, since the off-diagonal blocks of A

involve a negative identity submatrix that is not compressible in the usual sense. On the other

hand, off-diagonal scaling like in (3) leads to reasonable decay in the singular values of the

scaled off-diagonal blocks, as can be seen later. Our numerical tests later also show significant

advantages over preconditioners based on straightforward structured approximations.

Copyright c© 2011 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2011; 00:1–0

Prepared using nlaauth.cls



8 JIANLIN XIA

4. Our results here for the model problem can further serve as tools for studying other similar

structured preconditioners. In fact, even for the multilevel SIF scheme, it is still feasible to

perform various analysis such as spectral analysis for the scaled off-diagonal blocks. Indeed,

some strong claims can be made, as shown in the remaining discussions.

The discretized matrix A from the model problem has a block tridiagonal form. Without loss of

generality, we assume that the discretization mesh is N ×M in two dimensions and N ×N ×M in

three dimensions with the outermost ordering of the mesh points in the last direction, so that A has

M diagonal blocks T . In the 2D case, each diagonal block T corresponds to a 1D slice of the mesh

and has size N ≡ N . In the 3D case, T corresponds to a 2D slice of the mesh and has size N ≡ N2.

Also assume any partitioning of A does not split the T blocks in the analysis later. A has the index

set {1 : MN}. Later, when we refer to the model problem, we assume this setup is used.

Remark 1. Note that, like various other related model problem studies in [5, 12, 13, 14], the focus

here is not on how to solve such “easy” discretized problems. Rather, we use the model problems to

gain useful insights into the behaviors of the techniques under consideration. Here, we use the model

problems to better understand the potential of SIF preconditioning. As shown in our numerical tests

later, multilevel structured preconditioners based on straightforward off-diagonal compression have

difficulties to handle the model problems. On the other hand, SIF preconditioning works significantly

better. Even for such standard model problems, the analysis for SIF preconditioning is nontrivial.

We anticipate that the analysis here can serve as a starting point for studying and designing SIF

preconditioners for more practical discretized problems. Readers who are interested in numerical

evidences for practical sparse problems are referred to [7, 8, 13, 14, 24].

3.1. Singular values of the scaled off-diagonal blocks

A key point in the analysis of the effectiveness and robustness of SIF preconditioning for the model

problem is to derive the singular values of the scaled off-diagonal blocks. In this subsection, we focus

on the scaled off-diagonal block C in (3) from the 1-level SIF scheme. Results on the multilevel SIF

scheme will be given in Section 4.1. Suppose the partitioning in (1) follows the index set

{1 : MN} = {1 : m1N} ∪ {m1N + 1 : MN}, (17)

such that A11 corresponds to the leading m1 diagonal blocks T in A, A22 corresponds to the

remaining m2 = M −m1 diagonal blocks T in A, and

A12 =

(
0 0

−IN 0

)
. (18)

Suppose A11 and A22 have Cholesky factorizations as in (2). We would like to derive the singular

values of C = L−11 A12L
−T
2 .

The specific forms of L1 and L2 can be conveniently written down as follows. Let

S1 = T, Si = T − S−1i−1, i = 2, 3, . . . (19)

Suppose the Cholesky factorization of Si is

Si = KiK
T
i . (20)

Copyright c© 2011 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2011; 00:1–0
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EFFECTIVENESS AND ROBUSTNESS OF SIF PRECONDITIONING 9

Then Lk for k = 1,2 has the following form:

Lk ≡


K1

−K−T1

. . .

. . .
. . .

−K−Tmk−1 Kmk

 . (21)

(Here, the subscripts in black fonts are associated with the partitioning of A as in (1), and the

subscripts in regular fonts are for the original block tridiagonal partitioning of A due to the

discretization.)

Let the eigenvalue decomposition of T be

T = QΛ1Q
T , with Λ1 = diag (λ1(T ), λ2(T ), . . . , λN (T )) , (22)

where the eigenvalues are ordered as λ1(T ) < λ2(T ) < · · · < λN (T ). Then all Si and S−1i have the

same eigenvector matrices Q because of (19). Corresponding to (19), let the eigenvalue decomposition

of Si be

Si = QΛiQ
T , with Λi = Λ1 − Λ−1i−1, i = 2, 3, . . . (23)

Again, Λi = diag(λ1(Si), λ2(Si), . . . , λN (Si)) with the eigenvalues λ1(Si) < λ2(Si) < · · · < λN (Si).

The following lemma will be used frequently later.

Lemma 3.1. Let d1 > 2 and di = d1 − d−1i−1 for i = 2, 3, . . . Then

1 < di < di−1, (24)

d−11 + d−11 d−12 d−11 + · · ·+ d−11 · · · d
−1
i−1d

−1
i d−1i−1 · · · d

−1
1 = d−1i . (25)

Accordingly, Λi in (23) satisfies

Λ−11 + Λ−11 Λ−12 Λ−11 + · · ·+ Λ−11 · · ·Λ
−1
i−1Λ−1i Λ−1i−1 · · ·Λ

−1
1 = Λ−1i . (26)

Proof. We prove this by induction. (24)–(25) are obviously true for i = 1, 2. Suppose they

hold for i − 1 with i > 3. We show they also hold for i. Let wi = d−11 + d−11 d−12 d−11 + · · · +

d−11 · · · d
−1
i−1d

−1
i d−1i−1 · · · d

−1
1 . Since d1 > 2, di−1 > 1, we have di = d1 − d−1i−1 > 1. Then

di − di−1 = d1 − d−1i−1 − (d1 − d−1i−2) = d−1i−2 − d
−1
i−1 = wi−2 − wi−1

= −d−11 · · · d
−1
i−2d

−1
i−1d

−1
i−2 · · · d

−1
1 < 0,

and (24) holds. Also,

wi = wi−1 + d−11 · · · d
−1
i−1d

−1
i d−1i−1 · · · d

−1
1 = d−1i−1 + d−11 · · · d

−1
i−1d

−1
i d−1i−1 · · · d

−1
1

= d−1i d−1i−1(di + d−11 · · · d
−1
i−2d

−1
i−1d

−1
i−2 · · · d

−1
1 )

= d−1i d−1i−1(d1 − d−1i−1 + d−11 · · · d
−1
i−2d

−1
i−1d

−1
i−2 · · · d

−1
1 )

= d−1i d−1i−1(d1 − wi−1 + d−11 · · · d
−1
i−2d

−1
i−1d

−1
i−2 · · · d

−1
1 ) = d−1i d−1i−1(d1 − wi−2)

= d−1i d−1i−1(d1 − d−1i−2) = d−1i d−1i−1di−1 = d−1i .

It is known that, for the 2D or 3D model problem, all the eigenvalues of T are greater than 2.

Then (23) and (25) yield (26).

We are now ready to present the following theorem.
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10 JIANLIN XIA

Theorem 3.1. For the discretized matrix A from the 2D or 3D model problem partitioned as in (1)

following (17), the nonzero singular values of L−11 A12L
−T
2 are

σj(L
−1
1 A12L

−T
2 ) =

√
λj(S

−1
m1)λj(S

−1
m2), j = 1, 2, . . . ,N ,

where the Si matrices are given in (19).

Proof. According to (21), for k = 1,2,

L−1k =




I

−S−11

. . .

. . .
. . .

−S−1mk−1 I




K1

. . .

. . .

Kmk




−1

(27)

=


K−11

. . .

. . .

K−1mk




I

S−11 I
...

...
. . .

S−1mk−1 · · ·S
−1
1 S−1mk−1 · · ·S

−1
2 · · · I



=


K−11

K−12 S−11 K−12
...

...
. . .

K−1mk
S−1mk−1 · · ·S

−1
1 K−1mk

S−1mk−1 · · ·S
−1
2 · · · K−1mk

 .

With A12 in (18), we have

L−11 A12L
−T
2 =

(
0

−K−1m1
Z

)
, (28)

where Z is the first row of L−T2 as follows:

Z =
(
K−T1 S−11 K−T2 . . . S−11 · · ·S

−1
m2−1K

−T
m2

)
. (29)

Thus, the nonzero singular values of L−11 A12L
−T
2 are given by

σj(L
−1
1 A12L

−T
2 ) =

√
λN−j(K

−1
m1ZZ

TK−Tm1 ) =

√
λN−j(ZZTS

−1
m1), j = 1, 2, . . . ,N . (30)

(Notice that σj ’s are ordered from the largest to the smallest, and λj ’s are ordered from the smallest

to the largest.) Accordingly to (19) and (23),

ZZT = S−11 + S−11 S−12 S−11 + · · ·+ S−11 · · ·S
−1
m2−1S

−1
m2
S−1m2−1 · · ·S

−1
1 (31)

= Q
(
Λ−11 + Λ−11 Λ−12 Λ−11 + · · ·+ Λ−11 · · ·Λ

−1
m2−1Λ−1m2

Λ−1m2−1 · · ·Λ
−1
1

)
QT

= QΛ−1m2
QT ,

where the last equality is due to Lemma 3.1. Thus,

ZZTS−1m1
= QΛ−1m2

Λ−1m1
QT .

The result then follows from (30).

In fact, we can further write the explicit SVD of L−11 A12L
−T
2 as follows, which will be useful

later.
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Corollary 3.1. With Q and Λi in (23), let the full SVD of Ki in (20) be

Ki = QΛ
1
2
i V

T
i . (32)

Then the SVD of L−11 A12L
−T
2 is

L−11 A12L
−T
2 = U1Σ1U

T
2 , with (33)

U1 =

(
0

Vm1

)
, Σ1 = Λ

− 1
2

m1 Λ
− 1

2
m2 ,

UT2 = −Λ
1
2
m2

(
Λ
− 1

2
1 V T1 Λ−11 Λ

− 1
2

2 V T2 · · · Λ−11 · · ·Λ
−1
m2−1Λ

− 1
2

m2V
T
m2

)
.

Proof. With (29), (19), (23), and (32), we have

−K−1m1
Z = −K−1m1

(
K−T1 S−11 K−T2 . . . S−11 · · ·S

−1
m2−1K

−T
m2

)
= − Vm1Λ

− 1
2

m1Q
T
(
QΛ
− 1

2
1 V T1 S−11 QΛ

1
2
2 V

T
2 . . . S−11 · · ·S

−1
m2−1QΛ

− 1
2

m2V
T
m2

)
= − Vm1Λ

− 1
2

m1

(
Λ
− 1

2
1 V T1 Λ−11 Λ

− 1
2

2 V T2 · · · Λ−11 · · ·Λ
−1
m2−1Λ

− 1
2

m2V
T
m2

)
= Vm1(Λ

− 1
2

m1 Λ
− 1

2
m2 )

[
−Λ

1
2
m2

(
Λ
− 1

2
1 V T1 Λ−11 Λ

− 1
2

2 V T2 · · · Λ−11 · · ·Λ
−1
m2−1Λ

− 1
2

m2V
T
m2

)]
.

Then (28) yields the SVD in (33), as long as U2 has orthonormal columns. In fact, according to

Lemma 3.1,

UT2 U2 = Λm2(Λ−11 + Λ−11 Λ−12 Λ−11 + · · ·+ Λ−11 · · ·Λ
−1
m2−1Λ−1m2

Λ−1m2−1 · · ·Λ
−1
1 ) = I.

Based on Theorem 3.1, we can obtain specific expressions of σj(L
−1
1 A12L

−T
2 ) for the model

problem in two or three dimensions. For example, the 2D case (where N = N) looks as follows.

Corollary 3.2. Suppose the same conditions as Theorem 3.1 hold and A is further from the 2D

model problem. Let

θj = ηj +
√
η2j − 1, with ηj = 1 + 2 sin2 jπ

2(N + 1)
, j = 1, 2, . . . , N. (34)

Then

σj(L
−1
1 A12L

−T
2 ) =

√
γm1,jγm2,j , j = 1, 2, . . . , N,

where

γm,j =
θmj − θ

−m
j

θm+1
j − θ−m−1j

, m = m1,m2. (35)

Proof. ηj ’s in (34) are the eigenvalues of 1
2T . It is known that the eigenvalues of S−1m are (see, e.g.,

[14])

λj(S
−1
m ) = γm,j =

sinh(m cosh−1(ηj))

sinh((m+ 1) cosh−1(ηj))
, j = 1, 2, . . . , N.

Since ecosh
−1(ηj) = θj , we have

sinh(m cosh−1(ηj)) =
θmj − θ

−m
j

2
.
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12 JIANLIN XIA

This yields (35). The results then follow from Theorem 3.1.

Remark 2. The studies in this subsection indicates that, although A12 in (18) has a negative

identity block that is not compressible in the usual sense, after the scaling, L−11 A12L
−T
2 has decaying

singular values and becomes reasonably compressible. This then further fits the effectiveness results

in Section 2.2. It confirms that the scaling-and-compression framework can serve as a useful guideline

for designing effective structured preconditioners. Instead of straightforward off-diagonal low-rank

compression, it is beneficial to integrate diagonal information into off-diagonal blocks before they

are compressed.

3.2. Effectiveness of 1-level SIF preconditioning

With the studies in the previous subsection, we can give concrete effectiveness estimates for the

1-level SIF preconditioner.

Corollary 3.3. Suppose the same conditions as in Theorem 3.1 hold. Let L̃ be the 1-level Cholesky

SIF factor obtained with rank-r truncated SVD in (4). Then the eigenvalues of L̃−1AL̃−T are

1, 1±
√
λr+1(S−1m1)λr+1(S−1m2), . . . , 1±

√
λN (S−1m1)λN (S−1m2), (36)

where the eigenvalue 1 has multiplicity n−N + r with n the order of A. If A is further from the 2D

model problem, then with the same notation as in Corollary 3.2,

‖I − L̃−1AL̃−T ‖2 =
√
γm1,r+1γm2,r+1 < ηr+1 −

√
η2r+1 − 1, (37)

κ(L̃−1AL̃−T ) =
1 +
√
γm1,r+1γm2,r+1

1−√γm1,r+1γm2,r+1
<

√
ηr+1 + 1

ηr+1 − 1
.

Proof. Theorems 2.1 and 3.1 yield (36). For the 2D case, since θj > 1, we have

γm,j <
θmj

θm+1
j + θ−mj − θ−m−1j

<
θmj

θm+1
j

=
1

θj
.

Thus,

σj(L
−1
1 A12L

−T
2 ) =

√
γm1,r+1γm2,r+1 <

1

θj
= ηj −

√
η2j − 1, j = 1, 2, . . . , N.

This leads to in (37). In addition,

κ(L̃−1AL̃−T ) <
1 + ηr+1 −

√
η2r+1 − 1

1− ηr+1 +
√
η2r+1 − 1

=

√
ηr+1 + 1

ηr+1 − 1
.

To get more specific estimates, we suppose m1 and m2 are large enough. Then

σj(L
−1
1 A12L

−T
2 ) ≈ 1

θj
, κ(L̃−1AL̃−T ) ≈

√
1 + sin−2

(r + 1)π

2(N + 1)
,

For sufficiently large N and small r, we have

κ(L̃−1AL̃−T ) ≈

√
2(N + 1)

(r + 1)π
. (38)
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EFFECTIVENESS AND ROBUSTNESS OF SIF PRECONDITIONING 13

Thus, if r = O(1), then κ(L̃−1AL̃−T ) = O(
√
N). If r is a small fraction of N , then κ(L̃−1AL̃−T ) =

O(1).

These studies give concrete estimates of effectiveness for a given truncation rank r. In another

word, they show how to choose r to achieve a desired condition number κ(L̃−1AL̃−T ). For the 3D

case, a bound on κ(L̃−1AL̃−T ) can be similarly derived and is omitted.

3.3. Explicit form of the 1-level SIF preconditioner

We can understand the behavior of SIF preconditioning from another perspective by looking at the

actual forms of the preconditioners for the model problem.

Theorem 3.2. Suppose the same conditions as in Theorem 3.1 hold. Let r be the truncation rank

for the SVD truncation step in (4) and let Q̃ be matrix given by the first r columns of Q in (22).

Then the 1-level SIF preconditioner is

L̃L̃T ≡
(
A11 Ã12

ÃT12 A22

)
, with Ã12 =

(
0 0

−Q̃Q̃T 0

)
. (39)

Proof. For the lower-triangular Cholesky factor Lk of Akk for k = 1,2 in (21), L−1k has the form

(27). Also, the SVD of L−11 A12L
−T
2 is given in Corollary 3.1. Note that in the SVD of Ki in (32), Vi

is orthogonal and the singular values in Λ
1
2
i are ordered from the smallest to the largest. In the SIF

scheme, we truncate the SVD of L−11 A12L
−T
2 in (33) by keeping the r largest singular values in Σ1.

That is, the r smallest singular values in Λ
1
2
m1 and Λ

1
2
m2 are kept. Use Λ̃

1
2
i to denote the leading r× r

principal submatrix of Λ
1
2
i and use Ṽi to denote the singular vectors in Vi in (32) that correspond to

Λ̃
1
2
i . Then in the SIF scheme, L−11 A12L

−T
2 is approximated by a rank-r truncated SVD as follows:

L−11 A12L
−T
2 = U1Σ1U

T
2 ≈ Ũ1Σ̃1Ũ

T
2 , (40)

where

Ũ1 =

(
0

Ṽm1

)
, Σ̃1 = Λ̃

− 1
2

m1 Λ̃
− 1

2
m2 ,

ŨT2 = −Λ̃
1
2
m2

(
Λ̃
− 1

2
1 Ṽ T1 Λ̃−11 Λ̃

− 1
2

2 Ṽ T2 · · · Λ̃−11 · · · Λ̃
−1
m2−1Λ̃

− 1
2

m2 Ṽ
T
m2

)
. (41)

Accordingly, in the SIF preconditioner, A12 = L1(L−11 A12L
−T
2 )L2 is approximated by

Ã12 ≡ L1Ũ1Σ̃1Ũ
T
2 L

T
2 =

(
0

Km1 Ṽm1Σ̃1Ũ
T
2 L

T
2

)
. (42)

From (21), (32), and (41),

L2Ũ2 = −


K1

−K−T1

. . .

. . .
. . .

−K−Tm2−1 Km2




Ṽ1Λ̃

− 1
2

1

Ṽ2Λ̃
− 1

2
2 Λ̃−11
...

Ṽm2Λ̃
− 1

2
m2 Λ̃−1m2−1 · · · Λ̃

−1
1

 Λ̃
1
2
m2 .

Notice that for i = 1, . . . ,m2,

KiṼi = QΛ
1
2
i V

T
i Ṽi = Q

(
Λ̃

1
2
i

0

)
, K−T1 Ṽi = QΛ

− 1
2

i V Ti Ṽi = Q

(
Λ̃
− 1

2
i

0

)
.
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14 JIANLIN XIA

Then for i = 2, . . . ,m2,

−K−Ti−1Ṽi−1Λ̃
− 1

2
i−1Λ̃−1i−2 · · · Λ̃

−1
1 +KiṼiΛ̃

− 1
2

i Λ̃−1i−1 · · · Λ̃
−1
1

=−Q
(
I

0

)
Λ̃−1i−1 · · · Λ̃

−1
1 +Q

(
I

0

)
Λ̃−1i−1 · · · Λ̃

−1
1 = 0.

Thus,

L2Ũ2 =


K1Ṽ1Λ̃

− 1
2

1

0
...

0

 Λ̃
1
2
m2 = −


Q

(
Λ̃

1
2
i

0

)
Λ̃
− 1

2
i

0
...

0


Λ̃

1
2
m2 = −

(
Q̃

0

)
Λ̃

1
2
m2 .

Therefore, from (42),

Ã12 =

(
0

−Km1 Ṽ
T
m1

Σ̃1Λ̃
1
2
m2

(
Q̃T 0

) )

=

 0

−Q

(
Λ̃

1
2
m1

0

)
(Λ̃
− 1

2
m1 Λ̃

− 1
2

m2 )Λ̃
1
2
m2

(
Q̃T 0

)
 =

(
0 0

−Q̃Q̃T 0

)
.

Note that originally A12 has a negative identity subblock so it is not clear what rank-r

truncated SVD should be used in standard off-diagonal compression. Theorem 3.2 indicates that

the SIF preconditioning technique chooses −Q̃Q̃T as the truncated SVD, where Q̃ corresponds to

the eigenspace associated with the r smallest eigenvalues of Si. Such a truncation leads to the

quantification of the effectiveness as in the previous subsection.

3.4. Effectiveness of multilevel SIF preconditioning

We now look at the effectiveness of multilevel SIF preconditioning for the model problem. Suppose

the discretized matrix A is hierarchically partitioned, with the finest level partitioning following the

index set splitting

{1 : MN} = {1 : m1N}∪{m1N + 1 : (m1 +m2)N} ∪ · · · (43)

∪{(m1 + · · ·+ms−1)N + 1 : MN},

where m1 +m2 + · · ·+ms = M .

We can use induction and explicit computations similar to the proof of Theorem 3.2 to show the

following result. The details are omitted.

Corollary 3.4. Suppose the multilevel SIF scheme is applied to the discretized matrix A from the

2D or 3D model problem, where A is hierarchically partitioned with the finest level partitioning

following the index splitting (43). Then the resulting SIF preconditioner Ã ≡ L̃L̃T that is the same

as A except

Ãmk,mk+1
= Ãmk+1,mk

= −Q̃Q̃T , k = 1,2, . . . , s. (44)
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EFFECTIVENESS AND ROBUSTNESS OF SIF PRECONDITIONING 15

Thus in the multilevel SIF scheme, the compression of any scaled off-diagonal block replace the

corresponding −I subblock in A by −Q̃Q̃T .

We can also illustrate the effectiveness of the l-level SIF preconditioner L̃L̃T for the model

problems based on the results in [24]. The spectral analysis is much more sophisticated, since it

depends on how the singular values and singular vectors of the approximately scaled off-diagonal

blocks approximate those of the exact ones. Here, we just numerically illustrate how the condition

number varies when l increases. In Table I, we use the 2D model problem discretized on a 64 × 64

mesh and the 3D model problem discretized on a 32 × 32 × 32 mesh to test κ(L̃−1AL̃−T ), and

the original condition numbers κ(A) are 1.71 × 103 and 440.69, respectively. Clearly, after l-level

SIF preconditioning, all the condition numbers remain reasonably small when l increases, even for

r as small as 2. In comparison, if we use standard off-diagonal compression (here, by just keeping

r diagonal entries in the off-diagonal −I blocks), the resulting approximation fails to be positive

definite for the multilevel cases.

Table I. Condition number κ(L̃−1AL̃−T ) with A from the 2D and 3D model problems when the
preconditioner L̃L̃T is generated with the l-level SIF scheme.

Model problem 2D 3D

r 2 4 8 2 4 8

SIF

l = 1 13.84 8.36 4.74 9.44 6.74 5.22

l = 2 15.14 8.53 4.75 11.01 7.33 5.45

l = 3 17.63 9.50 4.89 12.93 8.57 6.25

l = 4 20.19 11.15 5.54 14.60 9.97 7.37

l = 5 21.95 12.73 6.56 15.71 11.07 8.41

Standard
l = 1 37.95 37.88 37.51 1.55 14.55 14.55

l ≥ 2 Breakdown (approximation not SPD)

In the test, we can also refine the meshes and increase the problem sizes. The condition numbers

slowly increase. For the 2D case, the increase is similar to that in (38). Numerical tests for more

practical problems can be found in [7, 8, 13, 14, 24].

Note that the effectiveness results in [24] has some strict robustness requirements in order to

guarantee that the multilevel SIF scheme does not break down or the approximation to A remains

positive definite. In the next section, we show that such requirements are too conservative and may

be relaxed.

4. ROBUSTNESS OF MULTILEVEL SIF PRECONDITIONING FOR 2D AND 3D

DISCRETIZED PROBLEMS

The 1-level SIF scheme always produces a positive definite approximation to any SPD matrix A.

This is not the case for multilevel SIF schemes. The generalization to multiple levels is done through

recursive applications of the 1-level scheme to the diagonal blocks in the hierarchical partition of

A. For convenience, we organize the partitioning procedure with a binary tree T . The matrix A is

partitioned hierarchically according to the nodes at each level of the tree. The leaf nodes correspond
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to the individual index sets at the bottom level partitioning in (43). The index set associated with

a parent node is the union of the child index sets. Thus, if a node p of T has two children i and j,

the corresponding diagonal block App is then partitioned as

App =

(
Aii Aij

ATij Ajj

)
. (45)

In the following, we study the robustness of the l-level SIF scheme applied to A from the 2D

and 3D model problems in Section 3. The 1-level SIF scheme is applied to all diagonal blocks of

A like App in (45). Similarly to (2), let Li and Lj be the lower-triangular Cholesky factors of Aii

and Ajj, respectively. In the multilevel scheme, Li and Lj are further approximated by L̃i and L̃j,

respectively, which are obtained via the recursive application of the 1-level SIF scheme. Like in (3),

the condition for the multilevel preconditioner to exist is that

(
I L̃−1i AijL̃

−T
j

L̃−1j ATijL̃
−T
i I

)
is SPD

for any pair of siblings i, j. This needs ‖L̃−1i AijL̃
−T
j ‖2 < 1, which may not hold for a general SPD

matrix A. In [24], a condition [(1 + τ)l − 1]κ(A) < 1 is used to guarantee the existence of the l-level

SIF preconditioner. This condition essentially means that the condition number of A cannot be too

large, the truncation rank r cannot be too small, or the number of levels l cannot be too large. Here,

we would like to use the model problems to show that these requirements are too conservative.

Indeed, when A is from the 2D or 3D model problems, we show that the multilevel SIF scheme

is unconditionally robust, i.e., it never breaks down and always produces SPD approximations to

A. In fact, as a stronger result, it can be shown that L̃−1i AijL̃
−T
j always preserves the leading r

singular values of L−1i AijL
−T
j when a fixed numerical rank r is used in the compression of the scaled

off-diagonal blocks at all the hierarchical levels of T . The details are as follows.

4.1. Singular values of scaled off-diagonal blocks within multilevel SIF schemes

Here, we study σj(L̃
−1
i AijL̃

−T
j ) in detail. The following lemma will be used.

Lemma 4.1. Consider Si in (19) and (23). For k > 1, let

S̃k = Q

(
Λ̃k

Λ̄k

)
QT ,

where Λ̃k is an r × r diagonal matrix with the r smallest eigenvalues of Sk and Λ̄k is any

(N − r)× (N − r) diagonal matrix with diagonal entries greater than those in Λ̃k. Also, let

S̃i = T − S̃−1i−1, i = k + 1, k + 2, . . .

Then for i ≥ k, the smallest r eigenvalues of S̃i are the same as those of Si.

Proof. Clearly, the columns of Q are also the eigenvectors of each S̃i for i ≥ k. From (22), we have

S̃k+1 = T − S̃−1k = QΛ1Q
T −Q

(
Λ̃−1k

Λ̄−1k

)
QT ≡ Q

(
Λ̃k+1

Λ̄k+1

)
QT ,

where

Λ̃k+1 = diag
(
λj(T )− λj(S̃−1k ), j = 1, . . . , r

)
,

Λ̄k+1 = diag
(
λj(T )− λj(S̃−1k ), j = r + 1, . . . ,N

)
.
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EFFECTIVENESS AND ROBUSTNESS OF SIF PRECONDITIONING 17

Since λj(Sk) = λj(S̃k) for j = 1, . . . , r, according to (19) and (23), λj(Sk+1) = λj(S̃k+1) for

j = 1, . . . , r.

Also, the diagonal entries of Λ̄k+1 are greater than those of Λ̃k+1 since for j = r + 1, . . . ,N ,

λj(S̃k+1) = λj(T )− λj(S̃−1k ) > λr(T )− λr(S̃−1k ) = λr(S̃k+1).

Therefore, the r smallest eigenvalues of S̃k+1 (the diagonal entries of Λ̃k+1) are the same as those

of Sk+1.

Similarly, we can extend this proof to show the result for any i > k + 1.

Now we are ready to study the singular values of the scaled off-diagonal blocks in the multilevel

SIF scheme. The essential idea can be illustrated in terms of the 2-level SIF scheme.

Theorem 4.1. Suppose the 2-level SIF scheme is applied to A from the 2D or 3D model problem,

where the tree T for organizing the partitioning of A is a 2-level tree with p the root node and i

and j the two children of p. Suppose Li and Lj are approximated by 1-level SIF factors L̃i and L̃j,

respectively. Also suppose r is the truncation rank at every SVD truncation step. Then

σj(L̃
−1
i AijL̃

−T
j ) = σj(L

−1
i AijL

−T
j ) < 1, j = 1, 2, . . . , r. (46)

Proof. To facilitate the proof, suppose T has the form in Figure 1. The matrix A corresponds to

the root p, and the first-level partitioning of A looks like (45). Similarly, Aii and Ajj are further

partitioned following the child nodes 1,2 and 3,4, respectively:

Aii ≡
(
A11 A12

AT12 A22

)
, Ajj ≡

(
A33 A34

AT43 A44

)
.

The corresponding finest level partitioning of the index set (43) for A looks like

{1 : MN} ={1 : m1N} ∪ {m1N + 1 : (m1 +m2)N}
∪ {(m1 +m2)N + 1 : (m1 +m2 +m3)N}
∪ {(m1 +m2 +m3)N + 1 : MN},

The off-diagonal blocks Aij, A12, and A34 have forms like in (18). In the following, we derive an

analytical form for L̃−1i AijL̃
−T
j when L̃i and L̃j are 1-level SIF factors.

i j
p

1 2 3 4

Figure 1. A two-level tree T for organizing the partitioning of A.

According to Theorem 3.2,

Aii ≈ Ãii =

(
A11 Ã12

ÃT12 A22

)
,

where Ã12 looks like (39). The Cholesky factorization of Ãii has the form

Ãii = L̃iL̃
T
i , with L̃i =

(
L1

L̃
(21)
i L̃

(22)
i

)
, (47)
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where

L̃
(21)
i =


0 −Q̃Q̃TK−Tm1

0 0
...

...

0 0

 , L̃
(22)
i =


K̃m1+1

−K̃−Tm1+1

. . .

. . .
. . .

−K̃−Tm1+m2−1 K̃m1+m2

 ,

and K̃m1+i is the Cholesky factor of S̃m1+i defined by

S̃m1+1 ≡ T − Q̃Q̃TK−Tm1
K−1m1

Q̃Q̃T , S̃m1+i ≡ T − S̃−1m1+i−1, i = 2, 3, . . . ,m2. (48)

Note that, in comparison, the computation of the exact Cholesky factor of Aii involves

Sm1+1 = T −K−Tm1
K−1m1

, Sm1+i ≡ T − S−1m1+i−1 = Km1+iK
T
m1+i, i = 2, 3, . . . ,m2.

We can show that S̃m1+i preserves the r smallest eigenvalues of Sm1+i for i ≥ 1. We first verify this

for S̃m1+1:

S̃m1+1 = QΛ1Q
T − Q̃Q̃TQΛ−1m1

QT Q̃Q̃T (49)

= QΛ1Q
T − ( Q̃ 0 )Λ−1m1

(
Q̃T

0

)
= QΛ1Q

T −Q
(

Λ̃−1m1

0

)
QT ,

where Λ̃−1m1
contains the r largest diagonal entries of Λ−1m1

. Since the exact matrix Sm1+1 satisfies

Sm1+1 = QΛ1Q
T −QΛ−1m1

QT , we can see that the r smallest eigenvalues of Sm1+1 are the same as

those of S̃m1+1. Then by applying Lemma 4.1 (together with Lemma 3.1) to (48), we get that the

r smallest eigenvalues of S̃m1+i are the same as those of Sm1+i.

Note that a form similar to (47) can be derived for L̃j, which uses matrices S̃m3+i, i = 1, 2, . . . ,m4

similar to those in (48). With the same reasoning, we can get that S̃m3+i preserves the r smallest

eigenvalues of Sm3+i. We can further obtain the forms of L̃−1i and L̃−1j similar to (27).

We are then ready to derive the singular values of L̃−1i AijL̃
−T
j . Similarly to (28), we have

L̃−1i ATjiL̃
−T
j =

(
0

−K̃−1m1+m2
Z̃

)
,

where K̃−1m1+m2
is the lower-right block of L̃−1i and Z̃ is the first block row of L̃−Tj with a form

similar to (29):

Z̃ =
(
K−T1 S−11 K−T2 · · · S−11 · · ·S

−1
m3−1K

−T
m3

S−11 · · ·S−1m3
Q̃Q̃T K̃−Tm3+1 S−11 · · ·S−1m3

Q̃Q̃T S̃−1m3+1K̃
−T
m3+2

· · · S−11 · · ·S−1m3
Q̃Q̃T S̃−1m3+1· · · S̃

−1
m3+m4−1K̃

−T
m3+m4

)
.

Then we have

σj(L̃
−1
i AijL̃

−T
j ) =

√
λj(K̃

−1
m1+m2

Z̃Z̃T K̃−Tm1+m2
)

=
√
λj(Z̃Z̃T S̃

−1
m1+m2

), j = 1, 2, . . . ,N . (50)
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Here,

Z̃Z̃T = S−11 + S−11 S−12 S−11 + · · ·+ S−11 · · ·S
−1
m3−1S

−1
m3
S−1m3−1 · · ·S

−1
1 (51)

+ S−11 · · ·S−1m3
Q̃Q̃T (S̃−1m3+1 + S̃−1m3+1S̃

−1
m3+2S̃

−1
m3+1 + · · ·

+ S̃−1m3+1 · · · S̃
−1
m3+m4

· · · S̃−1m3+1)Q̃Q̃TS−1m3
· · ·S−11

= Q
(

Λ−11 + Λ−11 Λ−12 Λ−11 + · · ·+ Λ−11 · · ·Λ
−1
m3−1Λ−1m3

Λ−1m3−1 · · ·Λ
−1
1

+ Λ−11 · · ·Λ−1m3
diag(Ir, 0)(Λ̌−1m3+1 + Λ̌−1m3+1Λ̌−1m3+2Λ̌−1m3+1 + · · ·

+ Λ̌−1m3+1 · · · Λ̌
−1
m3+m4

· · · Λ̌−1m3+1) diag(Ir, 0)Λ−1m3
· · ·Λ−11

)
QT ,

where Λ̌m3+i is a diagonal matrix for the eigenvalues of S̃m3+i with the eigenvalues ordered from the

smallest to the largest on the diagonal. According to the discussions above, the smallest r eigenvalues

of S̃m3+i and Sm3+i are the same for i = 1, 2, . . . ,m4. According to Lemma 3.1, we get

Z̃Z̃T = Q

(
Λ̃−1m3+m4

diag(λr+1(S−1m3
), . . . , λN (S−1m3

))

)
QT (52)

= Qdiag(λ1(S−1m3+m4
), . . . , λr(S

−1
m3+m4

), λr+1(S−1m3
), . . . , λN (S−1m3

))QT .

Note

λ1(Sm3+m4) < · · · < λr(Sm3+m4) < λr+1(Sm3+m4), λr+1(Sm3) < · · · < λN (Sm3).

Also, Lemma 3.1 means λr+1(Sm3+m4) < λr+1(Sm3). Thus, the eigenvalues on the right-hand side

of (52) are ordered from the largest to the smallest, and the r largest eigenvalues of Z̃Z̃T are the

same as those of S−1m3+m4
. As discussed above, the r largest eigenvalues of S̃−1m1+m2

are also the same

as those of S−1m1+m2
.

Since λj(Z̃Z̃
T S̃−1m1+m2

) = λj(Z̃Z̃
T )λj(S̃

−1
m1+m2

), we see that the r largest eigenvalues of

Z̃Z̃T S̃−1m1+m2
are the same as those of S−1m3+m4

S−1m1+m2
. Therefore, we get (46) from Theorem 3.1

and (50).

Based on Corollary 3.4, a procedure similar to the proof of Theorem 4.1 can be used to show the

following result.

Corollary 4.1. The result of Theorem 4.1 still holds if a multilevel SIF scheme is used. That is, in

the l-level SIF scheme (l > 1) where L̃i and L̃j in Theorem 4.1 are (l − 1)-level SIF factors, (46) is

still true.

To illustrate the studies, we apply the l-level Cholesky SIF scheme to the model problems in two

dimensions with a 64 × 64 mesh and three dimensions with a 32 × 32 × 32 mesh. l = 5 is used. In

Figure 2, we plot
|σj(L̃

−1
i AijL̃

−T
j )−σj(L

−1
i AijL

−T
j )|

|σj(L
−1
i AijL

−T
j )| for the top level scaled off-diagonal block (where i

and j are the children of the root node of T ). It can be seen that for a given truncation rank r, this

errors for j = 1, 2, . . . , r are nearly in the machine precision.

4.2. Positive definiteness of multilevel SIF preconditioners

Based on the previous studies, we can claim the positive definiteness of the approximation matrix Ã

produced by the multilevel SIF scheme applied to A from the model problem. This can be verified

from two perspectives. One is based on the explicit form of Ã as in Corollary 3.4, and another is

based on the singular values of the scaled off-diagonal blocks as in Corollary 4.1.
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(a) 2D model problem
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(b) 3D model problem

Figure 2.
|σj(L̃

−1
i
AijL̃

−T
j

)−σj(L
−1
i
AijL

−T
j

)|

|σj(L
−1
i
AijL

−T
j

)|
: relative errors of the leading r singular values of the top-level

scaled off-diagonal block in a multilevel SIF scheme, where A is from the model problem.

Theorem 4.2. Ã as in Corollary 3.4 produced by the multilevel SIF scheme is positive definite.

Proof. There are two ways to prove this. One way is to use the explicit form of Ã in Corollary 3.4.

Let Ã(1) be obtained from A with only Am1,m1+1 and Am1+1,m1 replaced by −Q̃Q̃T . Partition A

and Ã(1) conformably as

A =

(
A(0;1,1) A(0;1,2)

A(0;2,1) A(0;2,2)

)
, Ã(1) =

(
A(0;1,1) Ã(1;1,2)

Ã(1;2,1) A(0;2,2)

)
,

where the diagonal blocks of A and Ã(1) are the same, A(0;1,1) has Am1,m1 at its lower right corner,

and Ã(1;1,2) has −Q̃Q̃T at its lower left corner like in (39).

Then the Schur complement of A(0;1,1) in Ã(1) can be obtained from A(0;2,2) with the leading

diagonal block of A(0;2,2) modified to be S̃m1+1 as in (48). According to (49) and the discussions

following it, the r smallest eigenvalues of S̃mk+1 are the same as those of Smk+1. Furthermore,

the remaining N − r eigenvalues of S̃mk+1 are the same as those of T and are larger than the

corresponding ones in Smk+1 because of Lemma 3.1. In another word, S̃mk+1 can be written as

Smk+1 plus a positive definite matrix. Accordingly, the Schur complement of A(0;1,1) in Ã(1) is SPD,

and Ã(1) is SPD.

If we continue to replace the blocks Ã
(1)
m2,m2+1 and Ã

(1)
m2+1,m2 by −Q̃Q̃T to produce a new

approximation matrix Ã(2), the same procedure as above shows that this modifies the exact Schur

complement Sm2+1 by adding a positive definite matrix to it. Thus, Ã(2) is SPD. This process
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then continues for all k = 1,2, . . . , s as in (44), and the final approximation matrix Ã is the SIF

preconditioner and remains SPD.

Another way to prove the positive definiteness is to use Theorem 4.1 and Corollary 4.1. In the

2-level SIF scheme, following the notation in Theorem 4.1, Ã has the form

Ã =

(
L̃i

L̃j

)(
I ŨiΣ̃iŨ

T
j

ŨiΣ̃iŨ
T
j I

)(
L̃Ti

L̃Tj

)
, (53)

where i and j are the children of the root of T and ŨiΣ̃iŨ
T
j is the rank-r truncated SVD of

L̃−1i AijL̃
−T
j . According to Theorem 4.1, ‖L̃−1i AijL̃

−T
j ‖2 < 1. Thus, the matrix in the middle on

the right-hand side of (53) is SPD. Accordingly, Ã is SPD.

Similarly, if an l-level SIF scheme is used with L̃i, L̃j in (53) being (l − 1)-level SIF factors, we

can show Ã is SPD by induction using Corollary 4.1.

Theorem 4.2 indicates that the multilevel SIF scheme for the model problem is unconditionally

robust without the restrictions in [24]. The proof of the theorem indicates that the multilevel SIF

scheme has an implicit robustness enhancement (or Schur complement compensation) effect [10, 23].

That is, whenever a scaled off-diagonal block is compressed, a positive (semi)definite matrix is

implicitly added to the Schur complement. In 1-level SIF preconditioning, this guarantees the positive

definiteness of Ã for any SPD matrix A, as already shown in [24]. In multilevel SIF preconditioning, it

still holds for specific applications like the model problem. Even for general A, this Schur complement

compensation effect can help enhance the robustness of the resulting multilevel SIF preconditioner.

5. CONCLUSIONS

This work provides new insights into SIF preconditioning that is built on the scaling-and-compression

strategy. We have shown how SIF preconditioning improves the spectral properties of SPD matrices

and illustrated the specific effectiveness and robustness in terms of a type of model problems. In

particular, for the model problem, we derived the singular values of scaled off-diagonal blocks as

well as explicit forms of the preconditioners. The results are used to show that multilevel SIF

preconditioning has a robustness enhancement effect, and the resulting preconditioner for the model

problem remains positive definite regardless of the number of levels and the compression accuracy.

The studies confirm that the scaling-and-compression strategy is a useful technique for designing

effective structured preconditioners. Our results can also work as useful tools for studying various

relevant structured preconditioners. The work also gives new hints for improving SIF preconditioning.

For example, a plausible direction is to construct SIF preconditioners that could further accelerate

the decay of the singular values of the scaled off-diagonal blocks, which will be explored in future

work.
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