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Abstract

We propose an unconditionally stable numerical scheme for a 2D dynamic @Q-tensor model
of nematic liquid crystals. This dynamic @Q-tensor model is a L? gradient flow generated by the
liquid crystal free energy that contains a cubic term, which is physically relevant but makes the
free energy unbounded from below, and for this reason, has been avoided in other numerical
studies. The unboundedness of the energy brings significant difficulty in analyzing the model and
designing numerical schemes. By using a stabilizing technique, we construct an unconditionally
stable scheme, and establish its unique solvability and convergence. Our convergence analysis
also leads to, as a byproduct, the well-posedness of the original PDE system for the 2D Q-tensor
model. Several numerical examples are presented to validate and demonstrate the effectiveness
of the scheme.

1 Introduction

Liquid crystals are an intermediate state of matter between the commonly observed solid and liquid
that has no or partial positional order but do exibit an orientional order. The nematic phase is the
simplest among all liquid crystal phases whose rod-like molecules have no translational order but
possesses a certain degree of long-range orientaional ordering. The Landau-de Gennes theory [7] is
a continuum theory to describe the nematic liquid crystals. In this framework, it is widely accepted
that the local orientation and degree of ordering for the liquid crystal molecules are characterized
by a symmetric, traceless d x d tensor called the Q-tensor in R? (d = 1,2,3) [1,22]. The Q-tensor
vanishes in the isotropic phase, and hence it serves as an order parameter. The Q-tensor order
parameter may exhibit two different phases, namely the uniaxial phase and the biaxial phase. In
the former phase, (Q has uniaxial symmetry and the symmetry axis is defined by a unit vector 7
called the director. In the latter biaxial phase, the structure of () is more complicated. There exists
a vast literature on the mathematical study of the Landau-de Gennes theory, see [2,3,9,18,21,24,25]
and the references therein.

The equilibrium states are physically observable configurations which correspond to either global
or local minimizers of the free energy subject to certain imposed boundary conditions. Consider a

*Department of Mathematics, Purdue University, West Lafayette, IN, 47907, USA. cai99@purdue.edu
"Department of Mathematics, Purdue University, West Lafayette, IN, 47907, USA. shen7@purdue.edu
#Department of Mathematics and Statistics, Old Dominion University, Norfolk, VA, 23529, USA. x2xu@odu.edu



nematic liquid crystal filling a smooth, bounded domain Q C R?, and for the sake of simplicity, we
suppose that the material is spatially homogeneous and the temperature is constant. Historically,
the first step toward the understanding of its free energy is attributed to [11,23] where the free
energy density functional (called the Oseen-Frank energy density) is expressed in terms of the
director 77 with elastic constants K7, - -- Kjy:

K - . . Ks, . Ky + K
WOF:%(V'n)Q—i——nX(Vxn)|2+73|n-(VXn)|2+QT4

Here K1, --- K3 measure [11] the resistance of three basic distortions, called splay, twist and bend,

[tr(Vi)? — (V- 7)?]. (1.1)

respectively, and the last term in (1.1) is related to the twisted splay distortion, which is a null La-
grange term but is kept in most literature because this term does contribute to the total free energy
for some types of boundary value problems [14]. The Oseen-Frank formulation is generally consis-
tent with experiment except near the nematic-smectic phase transition [8]. In order to generalize
the Oseen-Frank description close to the clearing point, de Gennes [7] proposed a Ginzburg-Landau
type expansion of the free energy in terms of the tensor parameter () and its spatial derivatives.
The Landau-de Gennes free energy functional is derived as a nonlinear integral functional of the
Q-tensor and its spatial derivatives [1]:

£[Q) = /Q F(Q(x)) dr, (1.2)

where @ is in the Q-tensor space (c.f. [1,3,22]) defined by

d

S & {M € R¥xd ( > MU =0, MY =M"€R, Vi,j=1,-- ,d}.
i=1

The free energy density functional F consists of the elastic part F,; that depends on the gradient

of @, and the bulk part Fp,y that depends on @ only [15], i.e.,

F(Q) = Fer+ Fouik- (1.3)

The bulk free-energy density Fp,; is typically a truncated expansion in the scalar invariants of the
tensor Q. In the simplest setting one may take

Foun ™ Sx(Q%) + 310(Q%) + S0(@?), (1.4

where a, b, c are assumed to be bulk material constants. This bulk term (1.4) embodies the or-
dering/disordering effects, which drive the nematic-isotropic phase transition. It depends only on
the eigenvalues of (). Meaningful simulations can be performed using an expansion truncated at
the fourth order, to which we have to use in order to have a potential with multiple stable local
minima [9].

On the other hand, the elastic free-energy density F,; gives the strain energy density due to
spatial variations in the tensor order parameter. Its simplest form that is invariant under rigid
rotations and material symmetry is as follows [1,22]:

Fa = LVQP + Lod;Q*0kQ7 + L30,Q70,Q™ + LiQ™0,Q70,Q". (1.5)



Here and after we use the Einstein summation convention over repeated indices. The material
elastic constants Ly (k = 1,2,3,4) are assumed to be non-dimensional. It is worth pointing out
that Fg; in (1.5) consists of three independent terms with constants Lq, Lo, L3 that are quadratic
in the first partial derivatives of the components of (), plus an unusual cubic term with constant
L4. As mentioned in [15,18], the retention of this L4 cubic term is due to the consideration that it
gives a complete reduction of F[Q] to the classical Oseen-Frank energy density Wop. This is done
by formally taking Q(z) = sy (7i(z) ® fi(z) — 1), where s € RT and substituting it in (1.1). It
is shown in [15,18] that if Ly = 0, then K; = K3 during the reduction, which clearly contradicts
experiment. On the other hand, this L4 term causes the Landau-de Gennes free energy to be
unbounded from below [2].

In order to remedy the aforementioned deficiency in the static configurations, one way is to
replace the bulk potential part defined in (1.5) with a singular type potential [2]; alternatively, a
dynamic case is later proposed in [15] to keep the more common bulk potential in (1.5). More
specifically, the authors in [15] studies the following L? gradient flow in R? corresponding to the

energy functional £[Q] where Q takes values in S®:
90 SENY . . y
gt _ <@> PN i 1< <2 (1.6)

In (1.6), X is the Lagrange multiplier corresponding to the traceless constraint and p = (1%)2x2
is the Lagrange multiplier corresponding to the matrix symmetry constraint, and g—g denotes the
variational derivative of £ with respect to ). In addition, we always impose hereafter the coercivity
condition [15] (see also [9] for its counterpart in 3D)

L1+ Lo>0, Li+L3>0, (17)

and
c>0. (1.8)

From the modeling point of view, (1.7) is imposed to guarantee that the summation of the first
three quadratic terms concerning L1, Lo, L3 in F,; is positive definite, while (1.8) is to ensure Fp,
is bounded from below. Moveover, as noted in [5,15], the term %tr(Q?’) can be ignored from (1.4)
since tr(Q3) = 0 for any Q € S@.

After expansion, the evolution equation (1.6) reads

[VQ[*6%

8tQij—CAQ”+L4{251<(Q”“81Q”)—&-le@ij“f 2 }‘[a+ctr<@2>]Q”7 (1.9)

for 1 <14,j < 2, with initial and boundary conditions given by

Q(z,0) = Q%x), and Q(z,t)lon = Qz), Q°lon = Q. (1.10)

Note that
(E2L1+Ly+L3>0 (1.11)

under the coercivity condition (1.7).



Since the free energy £[Q] is unbounded from below when L4 # 0, generally one may not expect
a global existence result to the problem (1.9)-(1.10) without involving a smallness assumption of
Q(-,t). To be more precise, this gradient flow gives us the following energy dissipative law for
smooth solutions Q(-,t) that satisfies

2

d o0&
_ — — - T
prd (] /Q 50 AL +p—p' | dz,
which immediately produces the integral equality
t 5 2
EQ(, )] + / / 50 Mo+ p—p?| drds = E[Q(-,0)], vt > 0. (1.12)
0 JQ

Here Iy stands for the 2 x 2 identity matrix. However, we cannot get any a priori control of
1Q(t) || () from (1.12) because of the unboundedness of £[Q)].

Fortunately, the mathematical structure of (1.9) is exploited thoroughly in [15] so that for any
smooth solutions to the evolution problem, the smallness of ||Qol| () Will be preserved as time
evolves. Based on this property plus the coercivity condition (1.7), the authors in [15] obtain the
necessary a priori bounds from the energy equality (1.12), which paves the way to obtain the global
existence result.

Along the numerical front, there exists only a few studies on the the Q-tensor model. For the
stationary cases with Ly = 0, there have been several studies on phase transitions [17], density
variations [27], singularities [4] and liquid crystal alignments [6]. For the dynamic Q-tensor model
with Ly = 0, a spectral method was used in [30] to study the instability of nanorod dispersions,
an adaptive moving mesh method was proposed in [16], and a stable finite element discretization
was introduced in [4] for the gradient flow dynamics with constant orientational order parameter.
However, to the best of our knowledge, there has been no study, simulation or numerical analysis for
the Q-tensor model in the general case with Ly # 0. Notice that this unusual cubic term (L4 # 0)
corresponds to the compatibility between the Q-tensor model and the Oseen-Frank model for liquid
crystal [15,18].

In this paper we construct an unconditionally stable numerical scheme for the full dynamic
Q-tensor model (1.9)-(1.10). Since the system admits an energy law (1.12), it is desirable to design
an energetically stable scheme to approximate the Q-tensor model (1.9) -(1.10). On the other hand,
the energy stability (or the energy boundedness) does not imply well-posedness of the evolution
problem because the non-zero term L4 # 0, unless the L°° norm of the solution is kept small.
Inspired by this observation, we need to show, in addition to energy stability, that L°° norm of the
solutions can be kept small, in order to prove the well-posedness of the nonlinear system at each
time step. This is much more challenging than establishing the energy stability.

The rest of the paper is organized as follows. In section 2, we present our semi-discrete numerical
scheme for (1.9)-(1.10) and establish its unique solvability and convergence. As a byproduct,
we obtain the well-posedness of (1.9)-(1.10). We show some numerical tests in section 3, and
demonstrate the accuracy and efficiency of our proposed scheme. Finally, some conclusions are
drawn in section 4.



We provide below some notations and definitions to be used in the rest of the paper.
For matrices A, B € R?*2, we define the Frobenius product between A and B by

A:BE tr(A'B).
For Q € R?*2 we use |Q| to denote its Frobenius norm, i.e.,
Q= Vir(QQ) = | > Q7QY.
1<i,j<2
Besides, we define the matrix valued LP (1 < p < co) space by
def

LP(Q — R27¥2) & {Q L Q- R¥2|Q| € LP(Q,R)}.

Further, for any smooth scalar function u : 2 — R, we define the following Holder norms and
semi-norms:

def lu(z) — u(y)|

[u]ca@) = S e 0<a<l.
[Werra@ & max [Diulca ), [W]gora & |ax, [0:0ju] e, 0<a<l
[ullcoy = sup [u(@)],

€0
[ull e @y = lulloo@) + [ulea@), 0<a<l.
HUHcHa(Q) = ||UH01(Q) + [U]ClJra(Q), O0<a<l.
lull 2oy = llullez@) + [Wlezra @), 0<a<l

For a tensor valued function Q :  — R?*2, the corresponding norms are defined to be the maximum
of each component, for instance, [Q]ca () = . ISIZH;}éQ Q) (@); and the corresponding Hélder space
by
() — R2X2) &f {Q L Q= R¥2, max [QY], € ca(Q)}.
1<i,5j<2

Without ambiguity, LP(£2 — R?*2) will often be abbreviated as LP(Q) (1 < p < o), and C*+*(Q) —
R2%2) as CF+(Q) (0 < a < 1, k € ZT). For the sake of simplicity, we at times use || - ||z» to denote
|- lp(q) » and || - [[cr+a to denote [ - [|crra(q), respectively. We denote the partial derivative with
respect to xp of the ij component of @), by 0,QY.

2 Time discretization and its analysis

Let Q € C?*2(Q)). We start with Q° € C?+*(Q), and for n = 0,1,2,---, and At > 0, find Q"*!
from the following stabilized discretizations for (1.9)-(1.10):

Qij,n-{-l o Qij,n

_ CAQij,nJrl o aQij,nJrl o C’Qn+1’2Qij,n+1 o L(Qij,nJrl o Qij,n)‘inJrl‘Q
At



B \V4 n+12
+ 14 {2ak (Qlk,nale],nJrl) o aile,nJrlankl,nJrl + %513}’ (2.1)
Q"Moo =0Q; 1<ij<2 (2.2)
Several remarks are in order:

e The above scheme is essentially a backward Euler scheme with an additional stabilizing term
—L(QVUnHt — QUm)|VQ" |2 which plays an essential role in our analysis below. The stabi-
lizing constant L > 0 is to be determined later (cf. (2.4)).

e It is easy to see that (2.1) is a first order accurate approximation to (1.9).

e (2.1) can be simplified by taking into account of the traceless and symmetry properties of the
Q-tensor function (cf. (3.1)), but we consider the current form (2.1) for generality.

Our main result regarding the convergence of (2.1)-(2.2) is stated in Theorem 2.2. Before
proving the convergence, we are going to establish the unique solvability first, since the scheme
(2.1)-(2.2) is highly nonlinear and its solvability is non-trivial.

2.1 A priori estimates and well-posedness of (2.1)-(2.2)
We start with some a priori estimates for the time-discrete problem (2.1)-(2.2).

Lemma 2.1. Let Q" € C?*7%(Q), and assume

n A C
max {1Q" (00, 1@l etom } < s (2.3)

and that the stabilized constant L satisfies

I,
- C 9
where ¢ is defined in (1.11). Then, if Q"1 € C?*T%(Q) is a classical solution of (2.1)-(2.2), it holds

(2.4)

a

Q™| 100 () < max {||QnHL°°(Q)7 7} : (2.5)

where a~ = max{0, —a}.

Proof. Denoting
Pl = QP (26)
and multiplying both sides of (2.1) with 2Q%"*1  then summing up for 1 <i,j < 2, we get
Q"+ @ — QP — Q"
At
= O | (€O + 2La @)™ | — (AL4 Q" 4 2007 QT QU
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. 2L4Qij,n+laile,n+18jle,n+1 + L4tr(Qn+1)|in+1|2 o (a+C|Qn+1|2)|Qn+l|2
—2L[JQ"H P — (@) QY] IV QR (2.7)

Let us assume p"*1(-) take its maximum value at some point xg € €. Evaluating equation (2.1) at
T, then we have

Case 1: if |Q" (2 < 4/ %, then the proof is complete.

Case 2: otherw1se, we can assume \/p"t1(zg) > \/p"(zp), because \/p"1(zg) < \/p"(zp) Will
yield the conclusion (2.5) directly. First, for any matrix Q € R?>*2 and row vector b = (b!,b?),
using Cauchy-Schwarz inequality, we have

V6

QY| < % (@IQU[+1Q7[+1Q* Db * + (1@ + Q% |+ 21Q*NIY**) < —-1QI (b + [b*]%).

As a consequence, it holds
—(4L4Q"" + 205 9 QU OQIMH < —(2¢ — 2V6B|La| V) [VQT . (2.8)
Besides, using Cauchy-Schwarz repeatedly we get

_2L4Qij,n+18ile,n+lajle,n-l—l +L4tr(Q”+1)|VQ”+1|2
_ _2L4(Q12,n+1 + Q21,n+1)alel,nJrlaQle,nJrl _ L4(Q11,n+1 o Q22,n+1)alel,nJrlalel,nJrl
+ L4(Q11,n+1 . Q22,n+1)82le,n+182le,n+l
S |L4|(|Q11,n+1| + |Q12,n+1| + |Q21,n+1| + |Q22,n+1|)|in+1|2
<2 Laf|Q ||V (2.9)

Using (2.8), (2.9) and the assumption (1.8), we see that (2.7) is reduced to

p" (o) — p"(20) <
At -

_(QC - 2\/6‘L4’\/p—")IVQn+1’2 + 2‘L4’W’in+1’2
_ c(pn+1 _ %)pn-i-l L(p™ = /) [V Q2 (2.10)
- [QC - 2\/6‘114’\//)—” + 2Lpn+1 - (2‘L4] + 2L\/p_n) \/W] ‘VQ”‘HP.

Note that the quadratic function 2Lp" Tt — (2|L4| +2L\/p")/p" 1 in terms of 1/p"*+1! in (2. 10) is

monotone increasing in the interval I,» = [‘L“' +5 2 L\/p", 00), and attains its minimum at ‘L“‘ +3p"

If \/p™(xo) > %, then /p"t1(xg) > /p"(x0) > ‘L“ + 3/p"(x0), and based on (2.3), it is

easy to check from equation (2.10) that for the case /p" ( ) > |LL4|,

P"H(«TO) — p"(20) NG " o n+1 2
N < — [2¢ = 2VBIL4| /7 (w0) = 2|Laly/p" o) | [9Q" (a0) < 0,
which yields |Q"|(z) < [[Q"|| >(q) so (2.5) holds.

7



On the other hand, if \/p™(xo) snnllarly as above, we derive from equation (2.10) that,
for L satisfying (2.4), it holds

() — p"(x L (|L4 2
PRI <o - vl - g (4 Vot ) | 1907 )

' ¢ L (|L4| |La\® T

<— |20 = 2V6|Ly|——— - = [ == 4 =2 V" (x
[, ¢ 2@4\1 L2

<—2 - V" (2
ey i CARC)

<0,

which immediately implies (2.5).
Combining all the arguments above, the proof is complete. ]

Remark 2.1. It is easy to check from the proof of Lemma 2.1 that (2.5) is still valid if the R.H.S.
of (2.3) is replaced by any sufficiently small constant n > 0, and L satisfies (2.4).

Note that in the above Lemma 2.1 we proved that for classical solutions, the L* norm at the
(n 4 1)-th step will remain to be small, provided that the L> norm at the n-th step is assumed
to be small (small boundary data and % as well). But we have not yet proved the existence of
such classical solutions to (2.1)-(2.2). To this end, we shall apply the Leray-Schauder theory for
the existence of classical solutions. For the reader’s convenience, first we recall below the Leray-
Schauder fixed point theorem [13].

Theorem 2.1 (Leray-Schauder fixed point theorem). Let B be a Banach space and T : B x [0,1] —
B a compact map such that

1. T(z,0) =0, Vz € B,

2. there exists a constant M > 0 such that for each pair (x,0) € B x [0,1] which satisfies
x="T(x,0), we have
|z < M. (2.11)

Then the map Ty : B — B given by Tvy = T (y,1), y € B has a fixed point.

By virtue of Theorem 2.1, we have

Proposition 2.1. Let Q" € C?T*(Q — R?*2). Suppose ||Q" o) HQHCO ) and %~ are suffi-
ciently small and L satisfies (2.4). Then there exists a classical solution Q"1 € C”O‘(Q — R2%2)
to the system (2.1)-(2.2). Furthermore, (2.5) is also satisfied.

Proof. To utilize Theorem 2.1, we define

B = Cl—l—a(Q N R2X2),



and a map
T:Bx[0,1] — B.

Here T (u,0) € C?*T*(Q — R?*2) C B with u € B, § € [0, 1] solves the equation

H{CAU)” + 2L40,(Q™ " 0w ) — LydsuF o;uM + %,vuﬁ(gw — (a+ cluf*)u?
. . o _ um .
L - Qv - T - paw =0, 1<ij<2,
wlon = 9@.

We proceed to prove that all conditions in Theorem 2.1 are satisfied. To begin with, it is easy to
see that T (u,0) = 0, Vu € B. Next we assume (u,0) € B x [0, 1] satisfies u = T (u, o), that is,

ak{ (¢ +1— o)oM + 20L4Q"] 8luij}
I 3 3 I i _ Qi
= o{ Lt o — ZHVuPY 4 (0t clul?)u + L — Q57 |Tul + %}
= o f¥, 1<4,7<2, (2.12)
(2.1

ulog = 0Q. 13)

Then, following the same procedure in Lemma 2.1, one may conclude

[[uf| o Smax{HQ”Hco,\/%}, (2.14)

provided that |Q"||co, HQHCO(aﬂ) and %~ are sufficiently small. As a consequence, using the classical
Schauder estimate (see Theorem 6.6 in [13]), interpolation inequality and Young’s inequality, one
can derive from (2.12)-(2.13) that for sufficiently small ||Q"||co, we have

[ullc2ra < Cllullco + CllQllc2ra + Cllo f|lca
< C1Q%co + C + C||fllce
<C+ C|HVu\2HCa + Cllau + c\u]QuHca + CHu]Vu\QHCa
+ ClQ™MVul*llge + C(llullce + 1Q™ =)
< C+ Cllullge + CllIVul?(lce + CllulVul?|lce + CIlQ™Vul?||ce
_2 _a
< C+ Cllul|Ze® ullghsa + ClIVulllcoll[Vulllce + C(llullco + 1Q" oo ) VUl e
+ C(JJullee + 1Q" e ) I Vul? || co
_2 _a
< C+ Olull 26 NJull 252 + Cllullcollullcz+a 4+ C (Jlullco + 1Q"lco) [[ullcollul| c2+a
242a

2 _a 24+2a 2
+ Cllullgollullczra + CllQ™ 26" 1Q™ | 2550 lull 26 ullZ53a

1
< C+ Sllulczre. (2.15)



In the above C' > 0 is a generic constant that may depend on Q, At, |Qollco, [|Qllcz+a, |Q™||c2+e
and coefficients of the system. Therefore (2.11) is valid. In addition, it is easy to check that 7T
is a compact map due to the compact embedding C?*%(Q) — C'*%(Q). Thus all conditions in
Theorem 2.1 are satisfied and in conclusion 71y = T (y, 1) has a fixed point, which is equivalent to
say that the system (2.1)-(2.2) admits a classical solution Q"+ € C?+*(Q). O

For classical solutions whose existence was proved in Proposition 2.1 above, we proceed to
establish the following uniform estimates.

Proposition 2.2. The classical solutions established in Proposition 2.1 satisfy the following uni-
form bounds:

T
IVQ" 720y < CAt+ CIAQ 172y At + [VQ 72y, VO <n < [KJ’ (2.16)
%]
D 1AQ 72 At < CT + [VQ 720y + I1AQ° 1720 At (2.17)
n=1

provided that there exists a sufficiently small (but computable) constant € > 0 such that

~ ai
max {HQOHLOO(Q)a Q| Lo (062)5 1/ 7} <e. (2.18)

Here C > 0 is a constant that only depends on (, €, ), a, ¢ and Ly, but independent of n or At.
Proof. Multiplying equation (2.1) with —AQ%"*! and integrating over 2, we find

1
2At

= —C/ |AQ™ T2 dx—i—a/ Qijv"HAQij,anx_,_c/ QL 2QHM T AQE M g
Q Q Q

/Q |in+1|2 + |in+1 . in|2 . |in|2 dr

+ L/ IVQ T 2(QUn T — QUM AQY M dx — 2L4/ O™ 9,0,Q9 I AQU T iy
@ Q
y VO Y
_ L4/ {28lek,n8lQlj,n+1 . ankl,nJrlankl,nJrl + ?5”} AQZ],nJrldx
Q
_C/ ‘AQn+1‘2dx+Il+"'+15- (2'19)
Q

We estimate below the terms [; through I5 individually. To begin with, it follows from (2.5) and
(2.18) that
Q™| ooy < e (2.20)

Using Young’s inequality and (2.20), we obtain
¢
Li+1 < gl!AQ"“H2 +C(1Q" 72 + 1Q"|76)

< SIAQU + O + )0

10



< %”AQ““H? +C. (2.21)

By (2.20), Gagliardo-Nirenberg interpolation inequality and classical elliptic PDE theory [10], we
get

Is < LIVQ 7 (1Q" 2o + 1Q™ | oo ) 1AQ™ 1 2

< C(IQ™ Ml + Q") 1™ lzoe (1AQ™ g2 + 1@ 52 + 1l 5 IAQ™ 12
< C2(11AQ™ 2 + 10" 1 + Q5 ) 10Q" 122
< SIAQ™ 2 + 0, (222)
and
I < 2 La|Q" 1 IV2Q" | 2| AQ™ 1 2
< C1Q" o= (1AQ" 2 + 1@ 52 + 19l 3 5 IAQ™ 12
< SIAQ P 1 C. (223)

Similarly as in the estimate of I3, we can obtain

Is < 2|Laf[IVQ™ | alVQ ™ | L [AQ | 2 + 2| Lul[[VQ™ 74 [ AQ" | 2

< SIAQMIP + 1A | + C. (2.24)

Combining the above we conclude that V 0 < n < [Alt], it holds

IVQ™ e +IVQ™ = VQ™ 72 = [[VQ"[I72 < —CAQ™ 1At + gum;m +CAt. (2.25)

As a consequence, summing up the above estimate (2.25) for n from 0 to [£;] — 1 leads to (2.16)
and (2.17).

O

Based on the uniform estimates (2.16) and (2.17) established in Proposition 2.2, we can further
obtain the uniqueness result concerning the classical solutions of the system (2.1)-(2.2).

Proposition 2.3. Let Q" € C**2(Q). Suppose P"1 Q" € C?t2(Q) are two classical solutions
to the problem (2.1)-(2.2) that satisfy (2.20). If € in Proposition 2.2 is chosen to be suitably small
(but independent of n or At), then

Pn+1 = Qn—i—l.

Proof. Let R"t! = Qm*t! — Pn*tl. We have

Rigm+1
At

— CARij’nJrl _ aRij,nJrl _ C(‘QnJrl‘QQij,nJrl _ ’PnJrl‘QPij,nJrl)

11



. L(Qij,n+1|in+1|2 _ Pij,n+1|vpn+1|2) + LQij,n(|in+1|2 _ |vpn+1|2)
+ 2L48k (Qlk,nalRij,n-l-l) — I, (8ink,n+lanlk,n+l _ aiplk,n-l—lajplk,n—l—l)

L »
+ é(vanﬁ-lF _ ’vpn—l—l‘?)du’ (2.26)
R ag = 0. (2.27)
Multiplying equation (2.26) with R"*!  integrating over 2 and using the boundary condition (2.27),
we obtain
IR™12,
At

= _CHanJrl”%z - aHRnJrl”%2 _ C/ (‘QnJrl‘QQij,nJrl . ’P”+1‘2Pijv"+1)Rij,n+1 e
Q
_ L/ (‘VQ”—I—IPQU,?H-I N ’vpn+1‘2pij,n+1)Rij7n+1 da
Q
+ L/ (|VQn+1|2 _ |VPn+1|2)Qz‘j,nRz‘j,n+1 de — 2L4/ Qlk,nalRij7n+18kRij7n+1dx
. Q

_ L4/ (8ink,n+18lek,n+1 - aiplk’nJrlajPlk’nJrl)Rij’nJrldx
Q

L _
+ 74 (’in+1’2 _ ]VP”“P)tr(R”“) dx
Q
= VR + L+ + Iy (2.28)

Note that both P! and Q! satisfy (2.16)-(2.17) and (2.20). Hence
L+ Ip < —a| R 7o + e R 72 (1Q" 1 Zoe + 1Q"F Hlzoo [ P[0 + [ PP FHZ00)
<362 = 2) IR,
c
< 4c? | R,

where we used (2.18) to derive the last inequality.
By using (2.5), Ladyzhenskaya’s inequality, Gagliardo-Nirenberg inequality and classical elliptic
PDE theory, we have

Is < L[| R BVQ ™ 0 + 1P e (IVQ Lo + 9P 1) [V R o | B4 ]
< CLIR g2 [V R Q1 (1AQ™ 2 + Q7 12 + 1G], )

N[

_ 1 _ 3 1 ~
 CLIP™ oo R IV R Q7 (1AQ7 g 4+ 1@ 2 + 1915 )

=

_ 1 _ 3 1 ~
+ CLI P e [ B BNV R LIPT e (AP 22 + 1P Iz + Q145 )

< CLIR™ |2 [VR™ | 21 Q° o (1AQ™ 2 + 1)
_ 1 _ 3 3
+ CLIR™ M 2 VR 211Q% 7o (1AQ 2 + | AP | 2 + 1)
< Cel|[ R g2 [[VR™ | 2 (IAQ™ | 2 + 1)

N

12



N[

+ O R IVR Y 2 (1AQ" 2 + AP |12 + 1)
< %HVR"HH%z + Ce([lAQ [Tz + AP Y72 + 1) [ R™H|7..
Similarly,
L < L|VR" | 2[R | pa (IV Q" | + [V P £a) [|Q" |
< SIVR™ 2 + Ce(IAQ™ 3 + | AP, + 1) | B 2.
We derive from (2.5) that
I < 2| L[| Q"] [VR™ |72 < 2|Lale[[VR™ 72 < %HVR"“H%2
We can control I and I7 in a manner similar for I3, namely:
Is + Iy < 2|Laf[[VR™FY| g2 | R o (IV Q™| g + [[VP | 14)
< %HVR”“H% + Ce([|AQ™ |72 + AP Y72 + 1) [ R[72.

After summing up the above inequalities in (2.28), we get

Rn—f—l 2 B _ _
Wi Sy Reet |, 4 ace?| B4 2, + Co(IAQ™ 3 + AP 3, + 1) | R 2.
(2.29)
Finally, we derive from (2.17) and the above inequality that
_ _ _ 1 _
IR M < de?||[R™H 72 + Ce(2CT + A R™H|72 < S R™H 7
provided ¢ is chosen to be sufficiently small. Therefore we conclude
R =o.
O

2.2 Convergence

Next we shall construct a family of approximate solutions using linear interpolation in time. The
above a priori estimates for the set of discrete solutions allow us to obtain the existence of a
time-continuous limit function which we will show to be a solution of the original PDE system
(1.9)-(1.10).

Let us fix the initial data Q" and step size h ' At and define a piecewise linear interpolation
te[0,7) — Qn(-,t) as

RSO

T
(t — nh), VeeQ, nh<t<(n+1)h, 0§n<[ﬁ}.
(2.30)

Qn(z,t) = Q" (x)

13



Based on equation (2.1) and the above construction (2.30), we know that @), satisfies
%Qj) (t,w) = CAQ]] (w,nh) — aQj] (x,nh)
— c|Qn(z, nh)Q}l (z,nh) — L[Q} (nh. x) — Q) (nh — h,x)][VQu(nh, z)|*
Ik ij Kl Kl [VQn(@,nh)? 5;
+ Ly 28k[ n(nh —h,x)0,Q)] (x,nh)] — 0;Qy (z,nh)0; Q5 (x,nh) + ————05" 5,

2

T
VzeQ, (n—1)h<t<nh, 1§n§[ﬁ] (2.31)

We collect from Proposition 2.2 and equation (2.31) the following uniform bounds

IVQA(, )72 () < CAL+ CIAQ 2y At + IVQ°| 72y, VE € (0,T), (2.32)
T
/0 IAQK( D)I720ydt < CT + CllAQ 72y At + IVQ°|[72 (0 (2.33)
T
/0 10:Qn (-, 8)[22 gt < CT +C. (2.34)

In the above C' > 0 is a generic constant that does not depend on h.
As a consequence, as h — 0, we have from Aubin-Lions Lemma (see [28]) that the following
results hold.

Theorem 2.2. (Main result) Let Q°,Q € C*T*(Q — R?*?). Suppose 1Q°co@ys HQ”00(8Q) and

& are sufficiently small and L satisfies (2.4). Then the numerical scheme (2.1)-(2.2) admits unique

solutions Q™ for n > 1, and the piecewise linear interpolation Qp(t) of the numerical solution given
in (2.30) converges to an exact solution of (1.9)-(1.10), i.e.

Qn(-,t) = Q(-,t) strong in L*(0,T; H(Q)),
Qh('vt) - Q('at) weakly in Loo(ovTv HI(Q)) n L2(07T§ HQ(Q))a

where Q(-,t) solves
QY = (AQY — [a+ ctr(Q*)]QY + Ly {28’“ (Q"2QY) — 6:Q"0;Q™ +
Qlan =Q, Q(0,z) =Q°(x)

[VQ[*6%
2 9

in the weak sense defined in Definition 2.1 below.

We can also check directly that the limit solution Q always lies in the Q-tensor space S®,
provided Q°,Q € S@.
Next, we recall the notion of weak solutions discussed in [15]

Definition 2.1. For any T € (0,+00), a function Q) satisfying

Qe L®(0,T; H' nL®)NL*(0,T; H?), 8Q € L*(0,T;L?), and Qe S?, ae in Qx(0,T),

14



is called a weak solution of the problem (1.9)-(1.10), if it satisfies the initial and boundary condi-
tions (1.10), and we have

—/ Q:0Rdxdt =— 2L1/ OpQ : OpxRdx dt — / [a + ctr(QQ)]Q : Rdx dt
Qx1[0,7] Qx[0,7T] Qx1[0,7]

—2(Ly + Ls) /

8szk8]RZ] dx dt + (LQ + Lg) / 8lek8lRu dx dt
Qx[0,7T]

Qx[0,7]
- 2L4/ Quk0kQi; O Ryj dx dt — L4/ 0;iQr0; Qi Rij dx dt
Qx[0,T) Qx[0,1]

L
+=2 |VQ|2Riidxdt—/Q0:R(0)dx.
2 Jaxo,1) Q

Here R € C([0,T) x Q — R**?) is arbitrary.

Summing up the above, we obtained the well-posedness result for (1.9)-(1.10), which was also
established in [5,15] by using completely different approaches.

Corollary 2.1. Let Q°,Q € C?*t2(Q). For any fived T > 0, suppose HQOHLoo(Q), HQHLoo(aQ) and

a=

%~ are sufficiently small. Then there exists a unique solution Q(x,t) to the problem (1.9)-(1.10),
with the following properties:

Q € L®(0,T; L>®(Q) N H'(Q)) N L0, T; H*()), and Q(z,t) € 8P, V(x,t) € Q x [0,T].
Further, ||Ql| L~ (q) always stays small during evolution.

It is worth mentioning that the regularity in Corollary 2.1 can be improved using bootstrap
argument so that the weak solution () is indeed a classical solution.

Next let us recall Lemma 3.2 in [15] that relates to the continuous dependence on the initial
data.

Lemma 2.2. Let
Qi € L0, T; L(Q) N H'(Q)) N L*(0, T; H*(Q)) (i = 1,2)

be two global weak solutions to the problem (1.9)-(1.10) on (0,T"), with initial data Q1, Q2 € L ()N
H'(Q). Suppose ||Qill = (q)(i = 1,2) are sufficiently small. Then for any t € (0,T), we have

(@1 — Q2)(®) 120 < Ce“"(|Qor — Quzll 20 (2.35)

where C' > 0 is a constant that depends on 2, Qo; (i = 1,2), Q and the coefficients of the system,
but not t.

By virtue of Lemma 2.2, we may relax the regularity assumption on the initial data Q°, and
henceforth we state the existence result as follows
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Corollary 2.2. Let Q° € H'(Q)NL>®(Q), Q € C*t*(Q). For any fized T > 0, suppose QI Lo (02)
||QHL00(6Q) and = are sufficiently small. Then there exists a unique global weak solution Q(x,t)
to the problem (1.9)-(1.10) that satisfies

Q € L™(0,T; L®(Q) N H(Q)) N LA(0,T; H*(Q)), Q(x,t) € SP, V(x,t) € 2 x [0,T]
Further, the smallness of the L™ norm of Q) is preserved during evolution

Proof. For Q¥ € L>(Q) N H(£), let us use the standard mollifier to establish Q*° € C?**< (¢ — 0)
with Q0 — Q° in HY(Q2), and ||Q*°| =~ < [|Q°||z=. Then Q°(¢) is the corresponding solution
with initial data Q°. As Q° € L(0,7;L>* N H') N L%*(0,T; H?) and such bounds depend on
the L N H! bound of Q° only, Q¢ is a Cauchy sequence in L>(0,T;L?(Q2)). Hence we define
Q(z,t) = ;g% Q° (z,t) that solves the equation weakly. Then we may proceed as before and the

proof is complete. O

Remark 2.2. It is pointed out in Theorem 2.2 that the initial data Q° of the evolution problem
(1.9)-(1.10) can be relazed from C*** to H' N L>®. Regarding the boundary data Q, however, it
seems that we cannot relax its reqularity because of the Schauder estimates used in Proposition
2.1. On the other hand, one may easily find that it suffices to assume Q € C%(0Q) to perform the
mazximum principle argument in Lemma 2.1.

3 Numerical experiments

We have shown in the previous section that the proposed numerical scheme preserves the symmetric
and traceless properties of the tensor Q™ (n > 1), provided the initial state Q° and boundary value
are in the Q-tensor space S@. By parameterizing Q as

Q) = (p(:,t) Q(-,'tz)j)> 000 =0 = (pg q00> 7 (3.1)

the numerical scheme (2.1)-(2.2) can be rewritten as:

pn+1 o pn
i =™ a2l g P = 2L = ) (9 + (V)
+2L4 (pnaxxanrl - pnayyanrl + 2qn :tyanrl + a:tpn xanrl - 8ypn8ypn+1)
+ L4 (2aan ypn—I—l + 2ayqn xpn—I—l + ’aypn+1’2 + ‘8yqn+1‘2 o ‘&Epn—I—l‘Q o ‘&Eqn-i-l‘Q) ’
qn+1 _ qn
g AT —ag" T = 2" g = 200" = (VP [V )

+ 2Ly (pn&mqn—kl - pnayyqn+1 + 2qn8:qun+1 + aacpn an—I—l - ypnayqn+1)
+ 2L4 (aan yqn+1 + 8yqn an—I—l o xpn-i—laypn-i-l - aan-i—layqn—kl) ]

We now describe briefly our numerical approach. For simplicity of implementation, we consider
the periodic boundary conditions and use the Fourier spectral method [12] for the space vari-
able. Thus at each time step, we have a coupled nonlinear system for the Fourier approximation of
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ez(t=0.5) e_(t=0.5)

10° 107"
—6— L=05
—+—L=5 —O6— L=05
L=10
107" 107}
107 107
10_3 3 . 2 1 10 ) 3 2 1
10° 10° 10~ 10~ 10° 10°
T T

Figure 1: Temporal error ex(t = 0.5) (left) and e (t = 0.5) (right) for Example 1.

(p" 1, g™ 1), which will be solved by using the Newton iteration method. At each Newton iteration,
we need to solve a coupled linearized system. These linearized systems always have non-constant co-
efficients that make a direct solution by Fourier spectral method difficult and expensive. Therefore,
we solve them by using the preconditioned BICGSTAB method with a preconditioner coming from
a suitable linear system with constant coefficients for which the Fourier spectral method reduces to
a diagonal system. Hence, the cost of each BICGSTARB iteration is simply a matrix-vector product
which can be done in O(N?log N) (N being the number of modes in each direction) operations
with a pseudo-spectral matrix-free approach using FFT [12,26].

We now present some numerical results obtained by using the above approach.

Example 1. (Accuracy test) We set 2 = [-2,2] x [—2,2] and take the initial data to be
p°(x) = sin(mz1/2) sin(mza/2), ¢°(z) = cos(mxy/2) cos(mao/2), == (21,29)7 € Q. (3.2)
The other parameters are given as
(=2 a=05 c¢=4, Ly=0.1 (3.3)

Since we do not know the explicit form of the exact solution, we take the ‘reference’ solution
(p(-ytn),q(+,ty)) to be the numerical solution obtained by using the proposed scheme with the
stabilizing constant L = 0.5, space mesh size h, = 1/32 which well resolves the solution, and a
small time step 7, = 1074

We first look at the the temporal errors. We take the space mesh size h = 1/32 such that the
spatial errors are negligible. Let (pZ, ¢Z) be the numerical approximations obtained by our scheme
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Figure 2: (Example 2) Orientation of liquid crystal at different time ¢.

at t = t, with h = 1/32 and time step 7, and we introduce the L? and L* error functions as

—p2 2+ g — ¢ ] co-

Y2
T

= [1y/Ip

€oo(tn)

2
L2

—qn
qr,

n
T

72 + lla

— mn
bz,

Y2
T

Vb

Fig. 1 shows the temporal errors for different stabilizing constant L. It is clear that the scheme

€9 (tn)

is first order accurate in time.

[—2, 2] X [-2, 2] with periodic boundary conditions and ( = 0.4, a =

Example 2. We choose ()

0.1. We set the initial state

L:

L, = 0.08,

c=1,

(3.4)

Q%) = s°(x) (2ﬁ0 @i — 12) ,
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Example 3) Orientation of liquid crystal at different time ¢.

(

Figure 3:
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being the unit vector in R? representing the direction of the liquid crystal at position x.

Example 3. We choose the same parameters as in Example 2 but with the initial state

(3.6)

_12)7

279 @ 770

x
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Figure 4: Evolutions of |Q|? and the energy for Examples 2& 3.

with s°(x) = 0.1 and

() = {(1,0)2 x € [~1.5,1.5] x [~1.5,1.5); 57)

(0,1)f, otherwise.

In the computations for Examples 2 and 3, we choose 7 = 0.0025 and h = 1/32. Figs. 2 and 3
show the orientation of the liquid crystal during the time evolution. We observe from Fig. 2 that
the final steady states depend on the initial data. For Example 2 (cf. Fig. 2), initially there are
more vertical molecules than horizontal molecules. The set with horizon molecules shrinks with
time, and the liquid crystal directions eventually approach to the uniform vertical configuration.
On the other hand, for Example 3 (cf. Fig. 3), there are more horizontal molecules than vertical
molecules at ¢ = 0. The set of horizontal molecules expands towards boundary while its shape
oscillates, and eventually and the liquid crystal directions eventually approach to the uniform
horizontal configuration.

Next, we examine the time evolution of L™ norm of |Q|?> and bulk energy Fp. . (1.4), see
Fig. 4. We observe that, when the L bound of the Q-tensor order parameter is sufficiently small,
the elliptic part in the equation will force the system approach to a uniform state, and |Q|? will
approach to the minimizer of the bulk energy Fp, (1.4), which is constant 2. In all our numerical
results, the L°° norm of the numerical solutions remains to be small for small initial data, as proved
in the analysis.

Finally we examine the computational effectiveness of our approach by looking at the conver-
gences of Newton iteration and total BICGSTAB iterations at each time step during the evolution
of Example 2. Fig. 5 displays the number of Newton iterations and total BICGSTAB iterations
per time step, with tolerance 107!2 for the Newton iterations and 1071° for the BiICGSTAB itera-
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Figure 5: Numbers of Newton iteration and BiCGSTAB iterations at each time step for Example
2 with stabilizing constant L = 0.1 (left) and L = 10 (right). The tolerance of absolute error for
Newton iteration is 10712 (measured in maximum norm of the residue) and the tolerance of relative
error for BICGSTAB is 10719 (measured in /2 norm of the residue).

tions. We observe that the number of Newton iterations per time step ranges between 1-5, and the
total BICGSTAB iterations per time step ranges between 2-11, which indicates that, on average,
the BICGSTAB converges in just 2-3 iterations for each linearized system. These results indicate
that our numerical approach is very efficient.

4 Conclusion

In this paper, we proposed an unconditionally stable numerical scheme to solve a 2D Q-tensor
model for liquid crystal, and established its unique solvability and convergence. As a byproduct of
our analysis, we also established the well-posedness of the original PDE system for the 2D Q-tensor
model, which has been shown previously with completely different approaches.

The main difficulty in the analysis came from an unusual cubic L4 term in the elastic energy,
which made the free energy unbounded from below and caused great challenges in both analysis and
computation. By adding a stabilized term in our scheme, we were able to show that the L°° norm
of the numerical solution can be kept small which guaranteed the stability and the well-posedness.
Numerical tests showed that the scheme is indeed first order accurate for a wide range of stabilizing
constants, and produces physically consistent numerical simulations.

We only discussed a 2D Q-tensor model in this paper. Extensions to the 3D case, as well as the
full dynamical model coupled with Navier-Stokes equations entail significant analytical difficulties,
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and they will be considered in our future work.
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