LAGUERRE FUNCTIONS AND THEIR APPLICATIONS TO TEMPERED
FRACTIONAL DIFFERENTIAL EQUATIONS ON INFINITE INTERVALS

SHENG CHEN!, JIE SHEN2 AND LI-LIAN WANG3

ABSTRACT. Tempered fractional derivatives originated from the tempered fractional diffusion
equations (TFDEs) modeled on the whole space R (see [?]). For numerically solving TFDEs,
two kinds of generalized Laguerre functions were defined and some important properties were
proposed to establish the approximate theory. The related prototype tempered fractional differ-
ential problems was proposed and solved as the guidance. TFDEs are numerically solved by two
domains Laguerre spectral method and the numerical experiments show some properties of the
TFDEs and verify the efficiency of the spectral scheme.

1. INTRODUCTION

The normal diffusion equation d;p(x,t) = 92p(z,t) can be derived from the Brownian motion
which describes the particle’s random walks. Over the last few decades, a large body of literature
has demonstrated that anomalous diffusion, in which the mean square variance grows faster (super-
diffusion) or slower (sub-diffusion) than in a Gaussian process, offers a superior fit to experimental
data observed in many important practical applications, e.g., in physical science [?, 7, ?, ?], finance
[?, 7, 7], biology [?, 7] and hydrology [?, ?, ?]. The anomalous diffusion equation takes the form

a;’p(x,t) :agp(:ﬂ,t), (11)

where 0 < v < 1and 0 < p < 2 (cf. [?] for a review on this subject), whose solution exhibits heavy
tails, i.e., power law decays at infinity. In order to "temper” the power law decay, the authors of
[?] applied an exponential factor el to the particle jump density, and showed that the Fourier
transform of the tempered probability density function p(zx,t) takes the form

F[p)(w, t) = e PAL  @+aAZ @Dt g o) <9
where 0 <p <1, ¢g=1—p, D is a constant and

(A £ dw)* — AH 0<pu<l,

AR =
F V= O i) — A — oL, 1< <2
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Moreover, they defined tempered fractional derivative operators Gii through Fourier transform:
F [ai;u] (w) = AN w).Z[u](w), and derived the tempered fractional diffusion equation (TFDE):

8tu(£,t) = (_1)kCT{pai,,i + q(‘)‘i’;}u(az,t), we (k - 1) k)7 k= 1a 2. (12)

It has been argued that tempered anomalous diffusion models have advantages over the normal
dissuasion models in some applications of geophysics [?, ?] and finance [?].

It is a challenging task to numerically solve the tempered fractional diffusion equation (?7),
due particularly to (i) the non-local nature of tempered fractional derivatives; and (ii) the un-
boundedness of the domain. In [?], the authors used a finite-difference approach on a truncated
domain. In [?], the authors considered tempered derivatives on a finite interval and derived an
efficient Petrov-Galerkin method for solving tempered fractional ODEs by using the eigenfunctions
of tempered fractional Sturm-Liouville problems. In [?], the authors used Laguerre functions to
approximate the substantial fractional ODEs, which are similar to those we consider in Section 3,
on the half line. In order to avoid the difficulty of assigning boundary conditions at the truncated
boundary, we shall deal with the unbounded domain directly in this paper.

Since the tempered factional diffusion equation is derived from the random walk on the whole
line, one is tempted to use Hermite polynomials/functions which are suitable for many problems
on the whole line [?]. Unfortunately, due to the exponential factor e*®l in the tempered frac-
tional derivatives, Hermite polynomials/functions are not suitable basis functions. Instead, as we
will show in Section 3, properly defined generalized Laguerre functions (GLF's) enjoy particularly
simple form under the action of tempered fractional derivatives, just as the relations between gen-
eralized Jacobi functions and usual fractional derivatives [?]. Hence, the main goal of this paper is
to design efficient spectral methods using GLF's to solve the tempered fractional diffusion equation
(??) in various situations. However, Laguerre polynomials/functions are mutually orthogonal on
the half line, how do we use them to deal with (??) on the whole line? We shall first consider
special cases of (??) with p=1,¢=0o0r p=0, g = 1. In these cases, we can reduce (??) to the
half line, and the GLF's can be naturally used. For the general case, we shall employ a two-domain
spectral-element method, and use GLF's as basis functions on each subdomain.

The rest of the paper is organized as follows. In the next section, we present the definition of
the tempered fractional derivatives, and recall some useful properties of Laguerre polynomials. In
Sections 77, we define two classes of generalized Laguerre functions, study their approximation
properties, and apply them for solving simple one sided tempered fractional equations. In Section
7?7, we develop a spectral-Galerkin method for solving a tempered fractional diffusion equation on
the half line. Finally, we present a spectral-Galerkin method for solving the tempered fractional
diffusion equation on the whole line in Section ?7?. Some concluding remarks are given in the last
section.

2. PRELIMINARIES
Let N and R be respectively the sets of positive integers and real numbers. We further denote
No:={0}UN, Rf:={zeR:2>0}, R":={zcR:z <0}, RF :=R*u{o}. (2.1)

2.1. Usual (non-tempered) fractional integrals and derivatives. Recall the definitions of
the fractional integrals and fractional derivatives in the sense of Riemann-Liouville (see e.g., [?]).

Definition 2.1 (Riemann-Liouville fractional integrals and derivatives). For a,b € R or
a = —00,b =00, and u € R, the left and right fractional integrals are respectively defined as

Fu(x) = L ) Pu(z) = L " _u) T = (a
olhu(z) = F(H)/a (xfy)lfudy’ JLhu(z) = F(M)/m (yfg;)lfudy’ €N:=(a,b). (2.2)

‘temperFDEoriginal

leftintRL
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For real s € [k — 1,k) with k € N, the left-sided Riemann-Liouville fractional derivative (LRLFD)
of order s is defined by

L )
D)= — L W) A, 2.
zul2) I(k — s) dzk /a (x —y)s—F+1 v TE (2.3)

and the right-sided Riemann-Liouville fractional derivative (RRLFD) of order s is defined by

1 k dk b ”
Diu(z) = I‘((lc—)s)dxk/x (y_x()ys)_mdy, zeA. (2.4)

From the above definitions, it is clear that for any k € Ny,

dk
DF = (-1)*D*,  ,DF =DF  where D" .= T (2.5)
Therefore, we can express the RLFD as
JDiu(z) = Dk{ali_su(m)}; Diu(z) = (—l)ka{xI’;”u(w)}. (2.6)

According to [?, Thm. 2.14], we have that for any finite a and any v € L'(A), and real s > 0,
Do f(x) = f(z), ae in A. (2.7)

Note that by commuting the integral and derivative operators in (?7?), we define the Caputo
fractional derivatives:

“Diu(z) = oLE{DFu(2)}; “Diu(z) = (fl)kIIIg_S{Dku(x)}. (2.8)
For an affine transform x = At, A > 0, on account of
1 Ew(s) AT P w(Xs)
IH = =
oMo = 555 || = 7
A—H

_ T u(y) N
T T / Ty = A aaliv(a),

and % = )\d—dx, we derive from Definition 77 that

JdPv(AE) = ATH\TRu(2),  JDiv(At) = XN xDiv(z), s, u, A > 0. (2.9)
Similarly, we have the following identities for the right fractional derivative:

o(At) = AT IN u(x),  ¢Div(At) = XA*,D3v(z), s, A > 0. (2.10)

2.2. Tempered fractional integrals and derivatives on R. Recently, Sabzikar et al. [?, (19)-
(23)] introduced the tempered fractional integrals and derivatives on the whole line.

Definition 2.2 (Tempered fractional integrals). For A € R{, the left tempered fractional in-
tegral of a suitable function u(z) of order u € RT is defined by

e L7 e R 211
—O00-g U(I)_F(/L) /700 (l’—y)l_MU(y) Y, T e ’ ( . )

and the right tempered fractional integral of order u € R is defined by

A 1 0 ,—A(y—w)
g () = T ). oo u(y)dy, zeR. (2.12)

leftRLdefn

rightRLdefn
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It is evident that by (??) and (?7)-(??), we have
oot = IO T = T (2.13)
and
(@) = e (@)}, () = AT e M u(@)) (214)

As shown in [?], the tempered fractional derivative can be characterized by its Fourier transform.
Recall that, for any u € L?(R), its Fourier transform and inverse Fourier transform are defined by

Flul(w) = /OO u(z)e @ dr;  u(z) =F [ Ful(w)](z) ! /00 Flu)(w)e“? dw.  (2.15)

oo 2 J_ o

There holds the well-known Parseval’s identity:

/OO u(z) v(x) dz L[ F[u)(w) Fv](w) dw, (2.16)

oo 21 J_ o

where v is the complex conjugate of v. Let H(z) be the Heaviside function, i.e., H(z) = 1 for

x > 0, and vanishing for all z < 0. Then we can reformulate the left tempered fractional integral
as

1> 1 [
—oolt P u(z) = ] / yh e Mu(z — y) dy = m / Yt WH (y) u(z — y) dy
0

) (1) J-ox (2.17)
= (K xu)(z), where K(z):=z" e H(z)/T ().

Note that K (x) is related to the particle jump density (cf. [?, (8)]). Using the formula: .#[K](w) =
(A4 iw)™*, and the convolution property of Fourier transform (see, e.g., [?, ?]), we derive

FacltMu)(w) = ZIK % u)(@) = ZK] @) Zh@) = A +iw) P Zw).  (2.18)
Similarly, the Fourier transform of the right tempered fractional integral is
F I (w) = (N — iw) T~ T [u](w). (2.19)

In view of (?7)-(77?), Sabzikar et al. [?] then introduced the left and right tempered fractional
derivatives as follows.

Definition 2.3 (Tempered fractional derivatives). For A € R{, the left and right tempered
fractional derivatives of order p € R of a suitable function u(x), are defined by

9[_OOD§’>‘u} (W) = (A +iw)* Flu](w), ﬁ[mDé‘é)‘u] (W) = (A —iw)* Fu](w), (2.20)
that is, for any r € R,
—oDiMu(z) = FTHA + ) Flu)(w)](2),  Diu(z) = FHA — i) Flu](w)] (2).  (2.21)
Introduce the space
W2 (R) = {u € L*(R) : /R()\2 + w?)H ’y[u](w)lzdw < oo}7 A € RT. (2.22)
Thanks to the Parseval’s identity (?7?), the above tempered fractional derivatives are well-defined
for any u € Wf’Q(R). Moreover, one verifies from (??)-(??) that
CoollA o DEAu(z) = u(z),  JINDEMu(z) = u(z), Yue WHPR);
CooDEA TR Ay(2) = u(z),  DRAJRMu(z) = u(z), Yue L2(R).

(2.23)

Similar to (??), we have the following explicit representations.

relationAOO
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Proposition 2.1. For any u € W/(L’Q(]R), with A € RS‘, the left and right tempered fractional
derivatives of order p € [k — 1,k) with k € N, have the explicit representations:

_ooDEMy(z) = e_’\w,ooD’;{e”\xu(x)}, DA u(z) = e)‘wago{e_)‘xu(x)}, (2.24)

where _DE and DY are the Riemann-Liouville fractional derivative operators in Definition 77.
Alternatively, we have

_ooDEAu(z) = (D 4+ N)F {_wll;*““u(:z:)} = (D + M) {efAz_mI];*“{eMu(x)}};

2.25
ngO’)\u(:L') =(D - /\)k {TI}&?“U(I)} =(D - )\)k {6)\‘%11];07”{67/\171(58)}}. ( )

Proof. Using the properties of Fourier transform: .#[e~** DFv] = (A + iw)k.Z [e~**v], and
ﬁ[e_Aw,ooD’;{e’\Iu(:r)}] (w) = ﬁ[e_/\”Dk,ooI’;_“{e/\”u(x)}] (w)
=+ iw)kﬁ[e_)‘x,oolfr_“{e’\mu(ac)}} (w) (2.26)
= (A +iw)"F [l u(2) ] (w) = (A + iw)" F [u](w).
This verifies (??)-(??). Similarly, we can derive the second representation of ,D®*u in (?7).

The alternative form (??) can be derived by induction. Here we only verify the left tempered
derivative.

e For € [0,1), we derive from (??) and (??) that
_soDHAy(z) = e_’\I,OODg{eMu(x)} =N D,OOI;_“{e’\Iu(x)}
_ e—/\x D [ekx,oolglﬂ_“’/\{e)\wu(l‘)}} — (D + A){fooli_”’)‘{e)‘l'u(x)}},

which verifies the identity with k& = 1.
e For € [k — 2,k — 1), we assume that (??) is true. We next verify the identity holds for
wek—1k).

(D + V{2 u(z)} = (D + N)(D + N e Mo I eMu(z) } }
=(D+ /\){e_M_OODﬁ_l{e)‘Zu(a:)}} = e_)‘m_OOD;‘{eMu(x)} = _OOD;")‘u(a:).
This ends the proof. O

We collect below some useful properties (cf. [?]).

temperedProperty | Lemma 2.1. Given A >0 and p € [k — 1,k), k € N, the tempered fractional derivative

,oonzf’)‘u(x) = ,ooDi’)‘,ooIf;_“’)‘u(x), ID&)‘u(x) = ID&)‘wIig”’)‘u(:v). (2.27)

In addition, we have

CooIB () = L IR T8 (), JE A (x) = IR T (), (2.28)
oo DEP Ay (z) = _ DEA DY u(x),  DEFAu(z) = DR DY (), (2.29)
(—ooDEAu,v) = (u, ;DM ), (« D2, v) = (u, — oD ), (2.30)

where p,v > 0.

Remark 2.1. For a suitable function f(x), = € RY, its reflection g(y) = f(—vy), y € R~ satisfies

() = / Dy pear =T / e Myt i f(b)a
T=—y e ooe—/\t PRV — TN (g '
=i [ e o = 1 ),

‘ temperedderileft

‘ temperedderilLeftB

semigroupl
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integralbypart ‘
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dk dk
Hence, we can use (??) and derivative relation W (fl)kﬂ to obtain the tempered derivative
y x
relation
—oDy A f(-y) = o DEMf(2), y =z, z e R (2.32)

O

2.3. Laguerre polynomials and some useful formulas. For any a € R and j € Np, we recall
that the rising factorial in the Pochhammer symbol and the Gamma function have the relation:

r .
(@o=1; (a);=ala+1)-(a+j—1)= (?(JF)J) for j > 1. (2.33)
a
Recall the hypergeometric function (cf. [?]):
> xd
1F1(a;b;x)22@i', a,b,r € RT, —b¢N,. (2.34)

= (0); j

If b—a > 0, then 1 Fy(a;b; x) is absolutely convergent for all x € R. If a is a negative integer, then
it reduces to a polynomial.
The Laguerre polynomial with parameter oz > —1 is defined as in Szegé [?, (5.3.3)]:

1
L%a)(x):% 1F1(—n;oz—|—1;a:), n>1 zeRT, (2.35)
and L™ (z) = 1. Note that
Dn
1(0) = @ n :, o (2.36)

and the Laguerre polynomials (with @ > —1) are orthogonal with respect to the weight function

x%e~", namely,
/0 LSL )(z) Lgn)(sc) e dr =V dmny Ve = (I‘(n—i—l)) (2.37)
They are eigenfunctions of the Sturm-Liouville problem:
x” %0y (a:o‘He_m@gCLSla) (z)) + ML (z) =0, A, =n. (2.38)
We have the following relations:
LI (2) = 0, L) (2) — 0, L), (x), (2.39)
20, L (2) = nL{® (z) — (n+ o)LL, (x), (2.40)
n—1
0, L () = LD (2) = = Y LV (). (2.41)
k=0
In particular, for « = —k, k=1,2,... (See Szegd [?, (5.2.1)]),
_ Fn—k+1) &
LR — (—kR T k(R > k.
For notational convenience, we denote
r 1
pot o _Lntlta) (2.42)

I'n+1+a—0b)
We present below some formulas related to Laguerre polynomials and fractional integrals and

derivatives, which play an important role in the algorithm development and analysis later. We
provide their derivations in Appendix ?7.

rela+-D
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Lemma 2.2. For u € RY, we have

e L (@)} = A3 e L (@), o> 1, (2.43)
oDI{a L (2)} = heH 2 ML (2), > p—1, (2.44)
and
e L (@)} = e L (@), a > p— L (2.45)
DE{e L (2)} = e LW (2), o> —1. (2.46)
Moreover, we have that for k € N and a > k — 1,
a, —x7(x F(n + k + 1) a— a—k —x

3. GENERALIZED LAGUERRE FUNCTIONS

In this section, we introduce the generalized Laguerre functions (GLFs), and study its approxi-
mation properties. In what follows, the operators oI#*, ¢D#* on the half line should be understood
as 0 in place of —oo in (??) and (?7)-(?7).

3.1. Definition and properties. We first introduce the GJFs and their associated properties
related to tempered fractional integrals/derivatives.

Definition 3.1 (GLFs). For real « € R and A > 0, we define the GLFs as

£ () — T L%_a)(%:c), a <0,
n @) = e L%a)(Q)\x), a>0

for all z € R and n € Ny.

Remark 3.1. It’s noteworthy that Zhang and Guo [?] introduce the GJFs

Z) (g) = {x_o‘e—ng(—a)(ﬁx)7 a< -1, 5 i = [~al,

o (3.2)

la
efgle(a)(xL a>—1, Lo
where the scaling factor S > 0. It is seen that we modified the definition in the range of 0 < a < 1
(with 8 = 2X). This turns out to be essential for the numerical solution of FDEs of order y € (0, 1),

as we shall see in the subsequent sections. O

We next present the basic properties of GLFs. Firstly, one verifies readily from the orthogonality

(??) and Definition ?? that for « € R and A > 0,
oo |ar]
(e, \) (e,\) a _ lalx lae|, A Tn
A En (x)ﬁm (:C) z%dr = Tn 6"77“ Tn - (2)\)\04—&-1’ (33)
where ’yy‘lal is defined in (?7).
We have the following important (left) “tempered” fractional integral and derivative rules.

Lemma 3.1. For p,v,\,x € Ra‘, we have
oA LN () = B THL ) (), 34
oDEALT (@) = bt LN (@), v = (3:5)
and
oDETFALEIN (2) = (=20 FRE LI (2), 0> ke N, (3.6)

where h&° is defined in (77).

lagupolyint
lagupolyderi

|

Laguerreintegralr

|

Laguerrederivativ

lagufunderi

GLFsGuoZhang

TempGLderil
TempGLderi2

|

Tempderirelamuk‘
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Proof. We obtain from (??) and (?7?)-(?7?) (with replacing —oo by 0) that
oL LN () = e MM LN (@)} = e oL {a LY (2A2)
and
oDEALITN (&) = e DM LT (2)) = e oD {a” LY (200)}.

Thus, from (??) and Lemma ??, we obtain (?7)-(?7?).

Using (?7?) and the derivative relation (??) (with o = p), we obtain
oD AL (1) = o DDA LLT Y () = e MDA hipH L0 () }
= htot A DRLLO (202) ) = (—20) Rt L) (20a) e
This leads to (?7). d

Similarly, we have the following rules of the (right) “tempered” fractional integrals and deriva-
tives.

Lemma 3.2. For p,v,\,x € Ra‘, we have

ALY (@) = @) LY @), v (37)
DEACY N () = @NFLYTN (). (3-8)
Proof. Identities (??7) and (??) can be easily derived from (??), (??) and Lemma ?7?. O

We highlight the fractional derivative formulas, which play an important role in the forthcoming
algorithm and analysis.

Theorem 3.1. Letk € N and k —v <0,
L(n+v+1) L=

_ DFAM L) _ .
LY@ = e & @) (3.9)
_ F(n+k+1) (k—v,\)
kA VA _ k )
Proof. From Lemma 7?7 and relations
oo DPAy = efM"Dk{e)‘xu}, DAy = e”(—l)ka{(f}‘mu}, (3.11)

we obtain that for k — v <0,
—oDEM LN (2)) = e DRL(20) 7V (2A2) LY (20) )

27 D(n+1+v) Pnt+1+v)  gevn

v—k 7 (v—Fk) —Ar _
L 2 =
F(n—l—u—k—f—l)x no(2Ax)e Pn+v—k+1) "

(),

and
£D§§‘{x”£%"’)‘)(aj)} zem(—l)ka{(Q)\)_”(2)\33)”L£L”)(2/\32)6_2)‘9”}
(1?) _ kF(n + k + 1) v—k g (v—Fk) — Az
="(-1) N CE VTR (2Ax)e (3.12)
'n+k+1) _
—(_1\k (k=)
(D £ ).

This ends the proof. O

Another attractive property of GLFs is that they are eigenfunctions of Sturm-Liouville problem.

TempGLderillII
TempGLderi2II

GLFkderi++
GLFkderi+-



Theorem 3.2. Let s,v,x € RS‘ and n € Ng. Then,

2, DIMa* DI L) (2)} = A L) (@), v —s >0, (3.13) |sT-
and
e oD Ma DR LY (@)} = AL £ (@), (3.14) [s1+

s,V

where the corresponding eigenvalues X" = (2X)°hy2® and X", = (2X0)°hi,t%.
Proof. Due to (??) and (?7),
DI (@) = hp L7 (@), WD TN (@) = (20 LYY ().

It’s straightforward to obtain that

2 DM oD £ (@)} = DMt oD ) ()

= et DMt LG (@)} = bt DI (@) = (ARG £ (@),
Similarly, we have
x*VODi,)\{xSJerDZ,O/\ ﬁsLu,A) ((ﬂ)} _ xquD;,/\{strungé)\E;u,)\) (iL’)}

= (2A)%z 7V D3Nzt LETYN ()} = (20)%2 7V DI LTV TN (1) = (20)*hEtSS LN (1),

This ends the derivation. (]

Remark 3.2. The above results can be viewed as an extension of the standard Sturm-Liouville

problem of generalized Laguerre functions (cf. (??)) to the tempered fractional derivative. We

derive immediately from (??), (??) and the Stirling’s formula (see (??)) that for fixed s and v,
A =M" =0((20n)%), n> 1L

When s — 1 and A = 1/2, it recovers the O(n) growth of eigenvalues of the standard Sturm-
Liouville problem. U
3.2. Approximation by GLFs.

3.2.1. Approzimation by {L’g{l”\)(az) : a=—v <0} . Denote by Py the set of all polynomials
of degree at most IV, and define the finite dimensional space

FRANRT) == {a¥e  p(x) : p€ Py}, N €N (3.15)

Define the L2 (R*) with the inner product and norm:

(Fa)oi= [ Fawde. 2= (7. (3.10)

where w(x) be a generic weight function and g is the conjugate of the function g. In particular,
we omit w when w = 1.
To characterize the approximation errors, we define the non-uniformly weighted Sobolev space

PA(RT) = {u € L2 ,(RT): oDy Py e L2, (RY), k=0, ,m}, m € Ny, (3.17)

equipped with the norm and semi-norm

m 1/2
k,A A
lllaz, = (a2 + D7 oDS ™ ull20) 7 fulag, = o5 ™ ullum,  (3.18)
k=0

where the weight function w?(x) = x®.
Consider the orthogonal projection my"" : L2, (RT) — FXMRT) defined by

(M=, @) =0, V6 € FRARY), (3.19)
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Then, by the orthogonality (??), u and its L?-orthogonal projection can be expanded as

[eS) N
u(@) =Y LV (@), () (e) =) an Ll (@), (3.20)
n=0 n=0

where
i = (1, £5) /0

Theorem 3.3. For \,v > 0, we have that for any u € AZ?/\(RJF) with m < N + 1,

7" M = ully—r < € (2AN) 5 ||oDY T Ay (3.21)

and for any k < m,

k—m

oD (a3 M — )| w < ¢ (2AN) 7= [[oDY Tl

Wy (322)
where ¢ = 1 for large N.

Proof. By (?7), we have

o0

(u—my u)(x) = > i, £ (2).

n=N+1
By the orthogonality (??) and (?7),
v —v 2 v,V > k 2 _ x 2 5
[oDEFRALE |7 = (—2X)%F (Rl /O (LW, (272))? e wh(@)de = (d2)) >y

where we denoted dzz := (2A\)* h¥¥ and used the fact:

k

oo
_ Tn—
L @) O o) Pt = ki, = b
Thus we can obtain
oo 2 oo
—v,A N ) —UA _ N A2 KA
7N u—u||i,,, = Z (Un)Q'YZ)\7 ’WNV U_U‘A% = Z (undi,k)kaa
n=N+1 ’ n=N+1
2 _ - S~ U A \2 . mA
|u|,4:nA - Z (undn,m) fYn—m'
n=m

Then one verifies readily that

v,
TN+1 2

|u

Hﬂ_;/vl’)‘u — U“i‘" S 75 2 m,A Am}\?
(dN+1,m) INT1-m v

JeA 2 kA
A 2 N+tk | INt1-k |2
TN~ U{A’g < ( 9 ) Y |u Am -
v dN+1,m INFt1-m v
Recall the property of the Gamma function (see [?, (6.1.38)]):
0
T(z + 1) = V2rz*+ /2 exp ( —o+ @) Ve>0, 0<0<1. (3.23)

One can then obtain that for any constants a,b, and forn > 1, n+a>1and n+b > 1,

F(Tl+a) < a,b,_a—b

71_‘@ Ty = vy'nt T, (3.24)

where

ab a—2>b 1 (a—b)?
“n _(”‘]5’(2(n+bf1)Jr12(n+af1)+ n ) (3.25)

expanform

stirlingfor

Gammaratio

ConstUpsilon
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Therefore,

v,A
/7N,+l F(N + 2 — m) —v—m_ 2—m, 24V n\T—V—m
= < (2)\) 1% ’ N
v, m,\ v4+m = n ,
(dN+1,m)27N+1_m 2N+ (N +2 +v)
a0\ 2\FT(N +2 —
N+1,k YNtk _ RN T(N + m) gNYk—m , 2—m.2—k nrk—m
du,)\ myA - (2>\)mF(N+2 — k) < ( ) v, y
N+1,m P)/N+1fm
where v27™2+¥ ~ 1 and 12~™27% ~ 1 for fixed m and n > N >> 1. Then (?77)-(??) follow. O

3.2.2. Approzimation by {1155“7” () : a=v > 0};0:0. Introduce the non-uniformly weighted
Sobolev space:

T (RT) = {u € L2, (RY) : ,Dirue L2, (RT), 0< s < 7‘}, r e Ry, (3.26)
endowed with norm and semi-norm
1/2
||u||BZ~A = <||u||i,, + \u|QB£7A> , |u\B; = ||$Dg;rr,/\u||wu+r. (3.27)

Consider the orthogonal projection T : L2, (RT) — Fu*(RT), defined by

(M u—u, ¢),, =0, YoeFRRY), v>-1, (3.28)
Theorem 3.4. Let \,r,v > 0. For any u € Bl’:’/\(RJF) with 0 < s <r < N, we have
o DIMI = u} | e < € @AN)T D uf s, (3.29)
where ¢ ~ 1 for large N.
Proof. Note that by definition,
U — H?\})‘u = i U LN (), dy, = (u, E,ff”’\))wu/'y;;’)‘.
n=N+1

Then by (?7?), and the orthgogonality,
D3 LYV = 1L T VN2 re = i,

we can derive

oo (o)
2 ~ ~
|Hju\}/\u —ulp. . — || Z Un(Q)\)S£$LV+S’A)‘IE,v+s = Z (Un)Q(Q/\)%’YZ_‘—S’)\,
v n=N+1 n=N+1
9 o0 o0
Jully = 1D @@V LY G = D (@) @07
v n=0 n=0
Then,
) o) ,qurs,)\ %)
‘Hx)\u —ul, X _ Z (ﬂn)275+s,>\ < (2)\)23—27" 1:_‘:,1} Z (an)Q,yrul-‘rr,)\’
v n=N+1 IN+1 n=N+1
where by (?7)-(?7), we obtain

v+s,A
Inei VTN v s+2) o) rspyer,
71’({1@* @A T(N+v+r+2) —

Consequently, we have

s—

s [0 s—r
”IDoé))\{HN U —ufllyrts < ¢(2AN) 2 lulsy -

This ends the proof. O

Soblev Sp2

Projection2L2
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3.3. A model problem and numerical results. In what follows, we consider the GLF approx-
imation to a model tempered fractional equation of order s € [k — 1,k) with k € N:

oD3Mu(z) = f(z), z € RY, A>0; v9(0)=0, j=01,...,k—1, (3.30)

where f € L2(R") is a given function. Using the fractional derivative relation (??), one can find
k
u(z) = oI5 f(x) + Z cia® e
i=1

where {¢;} can be determined by the conditions at = 0. In fact, we have all ¢; = 0, and

ef)\x s

T 1
@) = oL f (o) = T /0 (@ =) (e = s /0 (1= 8 Le0=02 f(ydr. (3.31)
We see that if f(x) is smooth, then u(z) = z°F(x), where F(x) is smoother than f(z). With

this understanding, we construct the GLF Petrov-Galerkin approximation as: find uy € .FJS\;A(R‘*‘)
(defined in (?7?)) such that

(0D un,vn) = (fon), Yoy € F(RT). (3.32)
We expand f and uy as
0o N
F@) =) FulPP(@),  uy =) anliN (). (3.33)
n=0 n=0
Using the derivative relation (??), we find immediately that 4, = ZM fn forn=0,1,--- , N, which

. . by 0
also implies oD uny = 75" f.

Moreover, we can show that the numerical solution uy is precisely the orthogonal projection in
the following sense:
(uny —u, wx)y-» =0, Ywy € Fy*(RY). (3.34)
To this end, we first show
(un —u, D2 oN) = (DS uy — D3 u,uy) =0, Yoy € Fot(RY). (3.35)
Indeed, thanks to u¥)(0) =0 for j =0,...,k — 1, we have
oDEMuy —u} = e DM (uy —u)} = e IS DE (M (uy — u)}.
Then,
(0D un — oDE M, i) = (o1E %o DE{e* (un — u)}, e Moy)
= (e)‘“"(uN —u), (—1)’“D’€xI’(§g“vN) = (uN —u, xDi;f‘vN) ,
so (?7) is valid. In addition, thanks to Lemma ?? and (??), we have
DIMLON () = A7, DS {e” P LO (2X2)} = (20)%e ML (2)x) = (2A)*2 L5V ().

Hence, (??) is valid.
Thanks to (??), we derive from Theorem ?7 the following estimate where the convergence rate
only depends on the regularity of the source term.

Theorem 3.5. Let u and uy be respectively the solutions of (??) and (7). Then for (D™ f €
L2,.(I) with m € Ny, we have
et

= o DS A |y = ¢ (2AN)”

s+

2" oD |, (3.36)

lu — unlw-s < c(2AN)~

where ¢ =~ 1 for large N.

‘problemoriginal

| SolutionExact2

‘forAppendixproof—

Thmi1
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We provide some numerical results to illustrate the convergence behaviour. We take f(x) =
e % sinz and then evaluate the exact solution by (??). Note that as (D"* f = e 2*D™{e* f}, a
direct calculation leads to

“Azpym AT 1 oA <m>)\m—k Aok p (m))\m—ka.
DTN f} = e ,;;; h XD f ; L f

We infer from (?7?) that the spectral accuracy can be achieved by the GLF approximation. Indeed,
we observe from Figure 77 such a convergence behaviour.

FIGURE 3.1. Convergence of the GLF approximation to (??) with f(z) =e “sinz.

4. APPLICATION TO TEMPERED FRACTIONAL DIFFUSION EQUATION ON THE HALF LINE

SectionApp2

In this section, we apply the GLFs to approximate a tempered fractional diffusion equation on
the half-line.

subsectionspecial ‘

4.1. The tempered fractional diffusion equation on the half line. Consider the tempered
fractional diffusion equation of order p € (0, 1) on the half line:

Opu(z,t) + oDEAu(z, t) — Mu(z,t) = f(z,1), (z,t) € RT x (0,7,

W0.0 =0, Jim u(a,) =0 (4

u(z,0) = uo(z), reRT.

This equation models the particles jumping on the half line RT with the probability density
function (see [?, (8)]):

fe(z) = CTla ™ e M sy (z), 0<p <l

Remark 4.1. We note that equation (??) is equivalent to the half line form of the TFDE (??) in
which

51,2” = oDEAy— N, 0< p< 1.
Indeed, we can show that for € (0,1) and real A > 0,
oDy = e M DE M u(z) ) = e M DE{eMau(z)}, = eRT,

where @ = u for x € Rt and @ = 0 for x € (—o0,0). Moreover, we have
ﬁ[e_)“'c,ooD‘;{eMﬂ(m)}](w) :/]RD,OOIi_“{eMﬁ(x)} e~ (M Fiw)z gy
= (/\—|—iw)/R_ooI;_“{eMﬂ(x)} e~ Wz g,
:(x\—!—iw)/ReMﬂ(x) ZI}XT“e_(AH‘”)sz;

= (At iw) Zli)(w) B F[_oDENi(z)] (w).

This implies @ € WY’ (R) and the extended tempered fractional derivative oD u can be under-
stood in the sense of the original definition in [?]. O



dd something here!

ave done!

14 SHENG CHEN!, JIE SHENY2 AND LI-LIAN WANG?3

4.2. Spectral-Galerkin scheme. Define
HHARY) = {ve L2 (RY): (D*ve L2 (RY), 0<s<pu}, s,A>0, pe(0,1),
with the semi norm and norm
) 1/2
[0x = oDl lolln = (0l + ol 2)

Furthermore, let HY*(RT) be the closure of C§°(R*) with respect to the norm || - ||, x.
Thanks to the homogeneous boundary condition and (??), a weak form of (??) is to find
u(-,t) € HY(RT) such that

(Bpu(-,t),v) + a, (u(-t),v) = (f(-,t),v), Yove HYNRY), (4.2)
with u(z,0) = uo(x), where
au(u,v) 1 = (DX u, v) — M (u,v). (4.3)
The semi-discrete Galerkin approximation scheme is to find un(-,t) € ]:]l(,’)‘(R*) such that

(Bpun (), 0) + au(un (-, t),0) = (F(,1),0), Yo e FRr(RY), (4.4)
with

N
un(z,0) =uon(x) = Z con LN ().
n=0

Here, we choose max {O,u — % < v <1 so that u(0,t) = 0.

Now, we set

N
un (1) = eat)pn(@),  on(@) = L7V (). (45)
n=0
We derive from the scheme (??) that
d -
M%é’(t) + Ac(t) =f(t); ¢€(0) = Co. (4.6)

where for fixed ¢ > 0, vectors
6(t) = (Co(t)7 C1 (t), . 7C]\[(t))T, (_f() = (Co)o(t), 0071(15), e CQ’N(t))T,
£(t) = (fo(t), i®), - I ()", fal) = (fipn), 0<n <N,

and
Myn = (Ons Pm)s  Amn = au(@nv om), m,n=0,1,2,...,N. (4.8)

4.3. Numerical results. For clarity, we test three cases:

(i). u(x,t) = xe ** cos (). By a direct calculation, the source term is given by
2)
L2 —p)
The left of Figure ?7? illustrates that error decays to zero dramatically when using the spectral
method with basis £§ (z) in the space and the third-order explicit Runge-Kutta method in

time direction for A = 2/3, u =2/3.
(i). f(z,t) = cos(x)e *sin(t) and fix A and p as before, the right graph verifies that the solution
is singular even though f(z,t) is a smooth function.

f(z,t) = —ze > sin(t) + ( TlTH — )\“x)e*M cos (t).

FIGURE 4.1. Left: u = zexp(—Ax)cos(t). Right: f = cos(x)exp(—z)sin(t).

weakformhalf

Apq
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(iii). Consider the case f(z,t) = 0. Let p = 2/3, A = 2/3 in (??). The left of the Figure
7?7 exhibits the evolution of the tempered fractional diffusion model with the initial distribution
uo(x) = xe~®. The right describes the approximate rate by diverse basis £ (x) at time t = 10.

FIGURE 4.2. TFDEs: f =0, A=2/3, u=2/3.

5. TEMPERED FRACTIONAL DIFFUSION EQUATION ON THE WHOLE LINE

SectionTFDE

In this section, we present a spectral-element method with two-subdomains for the tempered
fractional diffusion equation on the whole line originally proposed by [?].

5.1. Tempered fractional diffusion equation. We consider the tempered fractional diffusion
equation of order pu € (k— 1,k), k = 1,2 on the whole line:

Opulz,t) = (~DFCr{pdf7; + 07 Yu(e, 1) + f(x, 1),
U(:Z?7O) = uO(z)7 hm|x\—>oc U(I7t) = Oa

(5.1) ‘ tempfracdiffuequa

where p, g are constants such that 0 < p,q < 1, p+ ¢ = 1, Cr is a constant and the fractional
operators are

e For0 < pu<1,

Oy = oD u = Nu, - 0w = o Diu — N (5:2)

o For 1 < pu <2,

8ff_ﬁu = _OODf;’)‘u — AP0 — N, 65’;u = mDé‘é)‘u + N 0 — M. (5.3)

5.2. A two-domain spectral-element method. Let A := (a,b),—0c0 < a < b < oo, and w > 0
be a generic weight function. For any m € N and a given weight function w, we denote

HIMA) :={ve L2(A): ofve LE(A), 0 <k <m}

with the semi-norm and norm
m 5 1/2
[Olmws = 107 0wrs [0lmws = (3 lolwn)
k=0

In particular, we omit the subscript w when w = 1.
Moreover, for real r > 0, we define

H"MR) :={ve L*(R): _D*v e L*R)}

with the semi norm and norm

)1/2

[0lrx = ll—D5 [l follea = ([0l + [0f7 5
We decompose the whole line as follows
R:A1UA27 A1 :(—OO,O>7 AQZ [O,OO)7

and denote uy; (z,t) := u(x,t j = 1,2. Introduce the approximation space:

)’Aj’

VA(R) = {6 € CR) : or,(2) = lp, py, € Pa,(A), i=12}, N=(Ni,N2),  (54)
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and define

L5 "V (—x), = <o,

07
¢*(x) = e M g (2) = { On, (@) = { IV ()

0, z >0,

z <0,

z >0,

where ,Cgfl’/\)(ac) = e_)"thg)(Q)\x). One verifies readily that

VA (R) = span{¢*(2); ¢, (z), 0<ni <Ny —1; ¢} (x), 0<ny < Ny—1}.

Then, our semi-discrete spectral-Galerkin method is to find un (-, t) € VR (R) such that
(8tUN(', t)a U) + a;‘q (uN(7 t)a U) = (f(’ t)7 U)7 Vo € V]%’(R)a
(un(-,0),v) = (ug,v), Vv € V(R),

where the bilinear form a” (-,-) is defined by

pq
P(— 0o DA, v) 4 (U, —ooDEA) — M(u,v), 0<p<l,
alty (1, 0) = § —{p(_oeDE~ P, ,DIM) + (DM, o DI 0) }
FN(u,0) + (p — QA (Dpu, v), l<p<2

We provide below some details of the algorithm.

Ni—1 No—1
un (@) = (0" (x) + Y cn, (D6, (@) + D el ()], (@),
n1=0 no=0
Ni—1 No—1
un (@,0) = 5o (x) + Y Cop by (2) + Y €5, b, (@),
n1=0 n2=0

(5.5)

56

(5.7) ‘ Galerkinscheme

59)

Let H(z) be the Heaviside function as before. Thanks to the tempered fractional derivative and
integral relations with GLFs, and a reflected mapping from positive half line R to negative half

line R™, we can derive the following identities (see Appendix ?7):

DN () = =20 M H(2), DLy, (@) = (ny + LN (—2) H(—a),

(2))%er® x <0,
,OoDi’Agb*(SC) = 2)\6/\1 o8] 6—2/\t
dt, >0,
T(1_s) /m s v
—(2X\)* " (ny + I)LEZ;IB(—D\x)eM, x <0,
S\ L — _
—eDFon @ =01 o L0 @A ))e
—en® dt, x>0,
I(l-s)/, ts

DL (@) = ~(n2 + DL (@) H (),

['(na +2) o8 p(-s)

o DIGT () =
xT ¢n2(x) F(n2+275) no

Then (??) leads to the system

M%é(t) +AC(H) = F(),

(5.10)

ey
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where

(1) = ("(1). €~ (1), S (1) ", (

S0 = (g (e By ). SO = (e (1) (B, (1)
( (t) = (
)

=l al al

t) = (fo (&) fr (B)seves vy (D)
F6) = (£,6%, fo@®)=(fén),  FLE) = (f 08,

and the matrices

%,k *,— *,+ * ok *,— *, 4
ngl) ngN)l ngN)g Agxl) Ang)l Ang)z
— = == -+ - — ¥ - —+
M = Mg\fl ><)1 Mg\flx])\il Mglel)\fg ’ A= Ag\il ><)1 Ag\flxl)\ll Agvl ><J)\72 ’ (5'12)
+,% +,— +,+ +,% +,— +,+
M§V2><)1 MSVQXI)\fl MEVQX])VQ ASVQX)l AEVQXI)Vl ASVQX])VQ

with the entries
a,b) /. . a
M3 1,5+ 1) = (6], 69),
a7b:*a_7+7 cvd:17NlaN27

a,b) . . a
Aﬁxd)(z—kld—i—l):agq( §’¢i)v
0<i<c—1, 0<j<d—1,

and 8(0) is determined by the initial data.

The proof of the tempered derivative relation (?7?), and the detail on the entries of the matrix
A can be found in Appendix ??. Base on the semi-discrete scheme (?7?), we further use the third-
order explicit Runge-Kutta method in time direction with step size h = 10~3 to numerically solve
the problem.

5.3. Numerical results. We solve (??) with Cr = 1 and ug = 10e°1* as the initial distribution
by using the method presented in the previous section. We first test the accuracy of our method.
In Figure 7?7, we plot the the convergence rate of the spectral method at T' = 5 with fixed time
step h = 1073, in which f(z,t) = 0 and f(z,t) = cost e~*" are the resource terms of the left and
the right respectively.

FIGURE 5.1. Left: f(z,t)=0. Right: f(z,t) = cost e~ .

Next, we examine behaviors of the solution under various situations. In Figure 7?7, we plot
the snapshots at different times of the tempered fractional diffusion with p = 1/3, ¢ = 2/3 and
p=3/4, ¢ =1/4, respectively. The case with p = ¢ = 1/2 is plotted in Figure ??.

FIGURE 5.2. Left: p=1/3, ¢ =2/3. Right: p=3/4, ¢ =1/4.

FIGURE 5.3. Left: p=¢=1/2, A=5/2. Right: p=qg=1/2, t =2.

e The parameters p and ¢ reflect the directional preference of the particle jumping. More
precisely, if p > ¢, the particles tend to jump to the right, and if p < ¢, the particles tend
to jump to the left, see Figure 7?7. In particular, p = ¢ produces a symmetric profile in the
case of f(x,t) =0, see the left in Figure 77.

figurel

figure2
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e The parameter A determines the probability of the jump distance of the particles. A larger
A indicates a shorter jump distance, see the right of Figure 77.

e To compare with the usual fractional diffusion equation, i.e., A = 0, , we plot in Figure
7?7 the particle distributions of the usual fractional diffusion and the tempered fractional
diffusion with initial distribution ug(z) = 10e~42" at time ¢ = 10. We observe that the tail
of the tempered fractional diffusion behaves like |z|~#~'e~*®l for large |z| while that that
of the usual fractional diffusion behaves like |z|=#~1.

FIGURE 5.4. Initial distribution ug(z) = 10",

6. CONCLUDING REMARKS

We presented in this paper efficient spectral methods using the generalized Laguerre functions
for solving the tempered fractional differential equations. Our numerical methods and analysis
are based on an important observation that the tempered fractional derivative, when restricted
to the half line, is intrinsically related to the generalized Laguerre functions that we defined in
Sections ?7. By exploring the properties of generalized Laguerre functions, we derived optimal
approximation results in properly weighted Sobolev spaces, and showed that

we define two classes of generalized Laguerre functions, study their approximation properties,
and apply them for solving simple one sided tempered fractional equations. In Section ?7, we
develop a spectral-Galerkin method for solving a tempered fractional diffusion equation on the half
line. Finally, we present a spectral-Galerkin method for solving the tempered fractional diffusion
equation on the whole line

APPENDIX A. PROOF OF LEMMA 77

We first prove (??7)-(??). Recall the fractional integral formula of hypergeometric functions (see
?, P. : for real b, u > 0,
7, P.287]): f 1b 0

_ Lb+pup) [ b

b+p—1 . . _ p—1,b—1 b +

x 1F1(a,b+ﬂ,$)—7/ (‘T*t) t 1F1(a,b,t)dt, reRT. (Al)
L(O)T (1) Jo

Taking @ = —n, b = a + 1 and using the hypergeometric representation (??) of the Laguerre

polynomials, we obtain

T(n+a+p+1)
F'n+a+1)I(w)

gOTHLOTH) (1) = / ’ (z — t)* "L (¢) dt,
0
which yields (??), i.e.,
ol {a® L ()} = hiy ™ @t LT ().
Then, performing ¢D# on both sides and taking o + p — «, we derive from the relation (??) that
for a — p > —1,
1

_ _ 'n+a+1) _ _
DAL (@) — a—p(a—p) _ a—prla—p) (Y
0 x{m n (.’E)} h%_#’_#m n ({E) F(’I’L—FO&—M—Fl)x n (.’E)

This leads to (?7).
We now turn to (??)-(??). According to [?, (6.146), P. 191 ] (or [?, (B-7.2), P. 307]), we have

JE{e LT ()} = e LY (), a> -1, p>0.

figure_compare

Represtation
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Similarly, from the property: ;D4 1% u(z) = u(x), we derive
Dl {e L (2)} = e "L (a).

Finally, we prove (??). Noting that

1Fi(a;c;x) =€ 1 Fi(c — a; ¢ —x), (A.2)

(cf. [2, P. 191)), we derive from (??) and (??) that

Dn
2L (2)e™ = mo‘m Fi(—nja+Lz)e™
n!
(O[+1)n a (Oé+1) «
= 7' 1F1(’I”L—|—Oé+1 a—+1; —ZC) = Tnx 1Fy (n+a+ 1+ 1;—1‘) (Ag) partproperty
B a—i—lni (n+a+1);(—1)f gite

1) j!
iz a—!— J i

Then acting the derivative D* on (??) and using the identities (??), (??) again, we obtain

- a+1n > n+a+1 l)jDkxﬂ“
} = Z

DF {2 L{®) (2 :
(a+1), 4!

0

_ (a+1)p i (n+a+1);(-1) T(G+a+l) gitek

n! = (a+1); FrG+a—-k+1) 3!
:xafk(aﬂ)n P(a+1) in+a+1 j (=x)
n! T(a—k+1) jzo (a—k+1); 4!
—k+1),
:m“—kwlﬂ(n—i—a—i—l;a—k—i—1;—:1:)
n!

(n+k)! _pla—k+1)ptsk _
= * F(-n—-ka—-k+1; ¥
o T 45! 1 1( n e’ + ,x)e
I'n+k+1) a—k -
= o " RSP (@)e.

This ends the proof.

APPENDIX B. THE PROOF OF (??) AND THE DETAIL ON THE ENTRIES OF A

Proof of (77)
e forr e R7,0<s<1,

* —s " €7>‘I T e)\‘r 2\ e)\-,—
D) =l Db () [ TN,

(1 oo (@—1T)"
o -z 02X (z—t) S AT 0
t=g-r 2he / ¢ ar = 2N / e~ (20) 75 d(2)1)
r(1-s)Jo ts r(1-s) /o
= (2)\)%e™?, (B.1)

D5 () = ok D (0) B M = (1)L ()}
@ _(ny +1)@20) L) (—2am)e

fooD;)\‘ZS;; (r) =0
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o forrc R, 0<s<1,

) . . e~ AT 0 IN2AT et I\ T —2Xt
—OODx’)\QZ/) (;z;) = —ooIglc A Dl )\d) ( ) 1"(1 — S) / sdT = F(l — S) / e dt,

oo (.’L‘ - T)
e 0 (g + 1)L (~2a7)e
7ooDS7/\ — _ ,OOII_S’A,OODL’A - (?:?) € / ni+1 d
T ¢n1 ((E) T T ¢n1 (LL') F(l — S) (JU — T) T
et e ] / L) (A —a))e™
(1 —s) ts ’
Ds,)\¢+ (33) _ Ilfs)\ D17A¢+ (.I) (1?) eiAm /x (TL + 1) (0)( )dT
e e G (e ) S T

_ F(TL2+2) 1—s p(1—s,))
a2 Fm @)

The entries of matrix A with 1l <pu=1+s<2.

=2\t oo ,—2Xt gt
Ds)\ le)\ dtdz (22) € dzd
(-oeD50"2Dc'0") 1—5/ / ! (1—3)/0 e /o“” (B.3)
o ﬂ 1—s ,2>\ T= 2/\t ﬂ l1-s_—7 — _ s .
= /0 t tdt T /0 T e Tdr = (s — 1)(2N)°.

I(1—s) 1—s)
Since
D{(2\z) n2+1(2)\x)} 2A(ng +2)L 7,2+1(2)\x) ie. /Ot n2+1(2)\1‘)d n21—|—2tL”12)+1(2)\t)
then,
(LoD ", DA ) = —2\ 1"j:: / / _2/\tdt LY, (2 x)dx
_29(%;1 /O ;M / LY (2\z)de dt (B.4)

—2\(ng + 1) / 1-s7(1) oAt
—_ Al [ s 9y dt.
(ns +2T(1—s) J, nat1(2Xt)e

Similarly, we have
—2x

1)(ny +1) L0 (2aA(t -
(~ocD3 0, o DI, ) = (4 1_n2+ / / 1 x)) Lt L9, 2:z)dz
_(mF D +1) ;(11)(_”;; D /0 e /0 L;O)H(z\x)L;O)H(zA(t—x))dxdt
x=t£ (N +1 T +1 ° s —
:dlm)(_z)) /O s /O LY exe) L 2xe(1 - ¢))ded.
(B.5)
The entries of matrix A with 0 < pu=s<1.
—2)t
dtdz

(wpos) = [ a2 [T

2\ 00 gm2At t 2\ o0
— (2))5~1 1 — (2))51 / 1—s —2)\t B.6
(2)) +F(1—5)/0 - /O dadt = (2)) T ), t'=se"2Mqr (B.6)

T=2At s—1 (2)‘)8_1 > l-s _—T — s—1
=" (2)) +m/0 T %7 Tdr = (2 — 8)(2))
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Owe to
D{(2Az)? (2)(2)\13)} = (20\)3(n2 + 2)xL£L12)(2/\x),

i.e.,

——12LP(2Mt),

t
/0 xLSle)(Q)\x)dx =12

we obtain that

0o —\x 0 9 22T
( ])S )\(b d)ng) / F(el 8) / Ae dr $L$L12 (QAJ)) )\mdﬂj‘
0 _

oo(x_T)

- 2 T2t
= 1—s / / (2)\m)dx—r(1_s)/0 " /Ongblz)(Q/\a:)dm dt (B.7)

e 27 L) (2at)e M dt.
<n2+2>r<1fs>/o (2xt)e

Similarly, we have

1 L(O) 2)\t— —2)t
(D20 00)= - gt [7 [ B g onnas
_S

_ . m+tl Oo—s —2xt () (97 )L — Ndx .
F(l—s)/o t / aLY)(222) LY, (2A\(t — z))dadt  (B.8)

e=te np+1 [, o2\

= - — t L ) (2AtE) 2Xt(1 — £))dede

s ELD ML (27e(1 — €))dg

The above equations are enough to calculate out the matrix A due to some symmetric properties
of the entries.



