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Abstract

We develop a family of second-order implicit-explicit (IMEX) schemes for the stiff BGK
kinetic equation. The method is asymptotic-preserving (can capture the Euler limit with-
out numerically resolving the small Knudsen number) as well as positivity-preserving — a
feature that is not possessed by any of the existing second or high order IMEX schemes.
The method is based on the usual IMEX Runge-Kutta framework plus a key correction step
utilizing the special structure of the BGK operator. Formal analysis is presented to demon-
strate the property of the method and is supported by various numerical results. Moreover,
we show that the method satisfies an entropy-decay property when coupled with suitable
spatial discretizations. Additionally, we discuss the generalization of the method to some

hyperbolic relaxation system and provide a strategy to extend the method to third order.
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1 Introduction

Kinetic equations describe the non-equilibrium dynamics of a gas or any system comprised of
a large number of particles. Compared to macroscopic fluid/continuum equations, they provide
information at the mesoscopic scale using a probability density function (PDF). Kinetic equa-
tions often contain complicated integral operators modeling particle collisions (for example, the
Boltzmann equation [7, 29]). To simplify the analysis and computation, the so-called Bhatnagar-
Gross-Krook (BGK) model [3], or its variants, has been widely used in many disciplines of science

and engineering (cf. [8, 21, 24]). After nondimensionalization, the equation reads

1
8tf+v-V,;f:gQ(f), t>0, veR%, zeQcR%, (1.1)
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where f = f(t,z,v) is the one-particle PDF (¢ is time, x is space, and v is velocity). ¢ is the
Knudsen number which is the ratio of the mean free path and typical length scale. The collision

operator @) is a relaxation type:

QUf) = Tp(M[f] = f), (1.2)
here M is the Maxwellian, or local equilibrium, defined as
Ml = Loy (1) (1.3
(2nT)% 2T )’ '

where p, v and T are density, bulk velocity, and temperature given by the moments of f:

1 1
p= / fdv, u= f/ fodv, T= flv —ul? dv. (1.4)
Rdv P Jrdv dop Jras

Finally 74 is some positive function that depends only on the macroscopic quantities such as p
and T.
It can be easily shown that the BGK operator (1.2) satisfies similar properties as the full

Boltzmann collision operator:

e conservation:

[ Qo) dv=0. o) = (1. /27 (1.5

e H-theorem:

Q(f)Inf dv<o. (1.6)

Rdv

Moreover, using the Chapman-Enskog expansion, one can derive the compressible Euler equa-
tions as the leading order asymptotics of the BGK model [2]. A simple way to see this is
to let € — 0 in (1.1), then formally f — MJ[f]. On the other hand, taking the moments
(-¢) := Jga, - ®#(v) dv on both sides of (1.1), one obtains (using (1.5)):

O (fd) + V- (fvg) =0. (L.7)
Replacing f by M[f] in (1.7) thus yields the compressible Euler equations:
p+ Vy - (pu) =0,
O(pu) + V- (pu@u+pl) =0, (1.8)
HE+V, (E+pu)=0,

where p = pT' is pressure and E = %“ T+ %pu2 is total energy.

When ¢ is small (the system is close to the Euler limit), the right hand side of (1.1) presents
strong stiffness. Hence explicit numerical schemes would impose very restrictive time step, i.e.,
At has to be O(g). To remove this constraint, implicit-explicit (IMEX) Runge-Kutta (RK)
schemes are natural and popular high order methods, in which the stiff collision part is solved
implicitly and the non-stiff convection part is treated explicitly [26, 11] (for IMEX-RK schemes
applied to other problems, see, e.g., [1, 22, 25, 4]). As a result, the time step can be chosen
independently of € and is determined by the non-stiff part only. Furthermore, it can be shown

that (see [11] for details) for fixed A¢ and suitable initial conditions, as ¢ — 0, the numerical



scheme becomes an explicit RK scheme applied to the limiting Euler equations, i.e., asymptotic-
preserving (AP) [20, 18].

AP property is a desired property for handling multiscale kinetic equations, for it guarantees
to capture the correct fluid limit without resolving €. Nevertheless, the implicit treatment of the
collision term would usually cause the numerical solution to lose positivity, which is unphysical
since f is a PDF. We point out that the first-order IMEX scheme is an exception whose positivity

can be easily achieved. Indeed, applying a forward-backward Euler scheme to (1.1) gives

St = n o Tgntt n n
V" = (M - et (1.9)
which is equivalent to
n+1 _ g n_ At ) g AtTfn+1 M n+1 110
f g + AtTfﬂ,+l (f v VLf ) + €+ AtTfn+l [f ] ( ' )

Therefore, if f™ is non-negative, f"*! is non-negative provided a positivity-preserving spatial
discretization is used for the convection term. The situation becomes, however, highly non-trivial
for the method beyond first order. The positivity of the IMEX-RK schemes is closely related
to the monotonicity property (also known as strong stability [13]) of the method. In [17, 16],
it was found that for the Broadwell model (a hyperbolic relaxation system, see Section 4), in
order to preserve monotonicity or positivity, a sufficient condition requires the time step to be
proportional to €. This suggests that it may be very difficult to achieve the AP property, which
requires At to be independent of €, and positivity simultaneously. Another evidence is, even for
the spatially homogeneous problem (no convection term in (1.1) and the IMEX scheme reduces to
a fully implicit one), the construction of implicit positive RK scheme is still not straightforward.
In fact, as proved in [14], there does not exist unconditionally strong stability preserving (SSP)
implicit RK schemes of order higher than one.

Recently, a class of second-order semi-implicit RK schemes was proposed for the ODEs with
stiff damping term [9]. The method is based on the modification of the explicit SSP RK schemes
and is shown to be well-balanced as well as sign-preserving. Later, a second-order AP discon-
tinuous Galerkin scheme was introduced in [19] for the Kerr-Debye model (a special relaxation
system). The method is based on the modification of an IMEX-RK scheme and can preserve the
positivity of one component of the solution vector. Inspired by these work, we propose to add a
correction step to the standard IMEX-RK scheme. Due to the special structure of the BGK op-
erator, this step can maintain both positivity and AP property. To insure second-order accuracy
and overall positivity of the scheme, new conditions including both equalities and inequalities
are derived for the RK coefficients. We then construct two IMEX-RK schemes fulfilling these
conditions, one of type A and one of type ARS (two commonly used forms of IMEX-RK schemes,
see Section 2.2 for definitions).

To summarize, we develop a new IMEX time discretization method for the BGK equation
(1.1) that has the following feature:

e the scheme is second-order accurate for e = O(1);

e the scheme is AP: for fixed At, as € — 0, it reduces to a second-order scheme for the

limiting Euler system (1.8);



o the scheme is positivity-preserving: if f* > 0, then f**1 > 0.

Note that the AP property implies that the time step is independent of . In fact, the CFL
condition for the new method can be made comparable to that of the first-order scheme (1.9).
We also provide a strategy to extend the method to third order. Furthermore, we show that the
method satisfies an entropy-decay property when coupled with suitable spatial discretizations,
and that it is possible to generalize it to some hyperbolic relaxation system which demands
positivity.

The rest of this paper is organized as follows. In Section 2, we introduce a general problem
and present the procedure to construct the new IMEX schemes, where the main focus is to
achieve second-order accuracy as well as positivity. In Section 3, we apply the new method to
the BGK equation and show that it is AP and entropy-decaying. To insure the fully discretized
scheme is positivity-preserving and AP, special attention needs to be paid for spatial and velocity
domain discretizations. These are described in Section 3.3. In Section 4, we briefly discuss the
generalization of the method to the hyperbolic relaxation system. In Section 5, we perform
several tests for the BGK equation and demonstrate numerically the properties of the proposed
method. The paper is concluded in Section 6. Extension of the method to third order is provided

in Appendix.

2 New IMEX-RK schemes

We now present the procedure of constructing the new IMEX schemes that are both AP and
positivity-preserving. Although we mainly consider the BGK equation (1.1), the framework is
quite general and can be applied to other problems that share a similar structure. Therefore, we
will start with a general setting and derive conditions for the RK coefficients to insure accuracy
and positivity, and will get back to the BGK model in Section 3 when discussing the AP property
as this latter part is problem dependent.

2.1 A general problem and basic assumptions

Consider an ODE of the form:

d 1
SE =T+ ), 21)

where f = f(¢) lies in some function space, 7 and Q are some operators. The equation (2.1)
may arise from semi-discretizations of time-dependent PDEs by the method of lines.

We assume the terms 7 (f) and Q(f) are positivity-preserving. To be precise, we assume
>0 = f+aAtT(f) >0, V0<aAt<C, (2.2)

where C is the Courant-Friedrichs-Lewy (CFL) type constraint for positivity. If T = Ta, is
a discretized transport operator, then C = Atpg with Atpg being the maximum time step
allowance such that the forward Euler scheme is positivity-preserving. For operator Q, we
assume

g>0, I-0bQ)f=9g= f>0, Vb>0. (2.3)



We also assume a similar property for Q'(¢)Q(f) and Q'(f)Q(f):
g9 h=20, (I+bQ(9)Qf =h = f=0, ¥b=>0, (24)

h>0, (I+bQ(f)Q)f=h= f>0, Vb>0, (2.5)

where Q'(g) is the Fréchet derivative of Q at g, given by
Qg +4f) —2Qlg)

Q(g)f = lim 5 (2.6)
2.2 The standard IMEX-RK scheme
The standard IMEX-RK scheme applied to equation (2.1) reads [25]:
i—1 i
i n ~ j 1 j :
FO= ey a T +AtY a2 Q) i=1,..,
=t =t (2.7)

PR AT () + ALY Wit Q).

i=1

Here A = (ay;), @ij = 0 for j >4 and A = (ay;), a;; = 0 for j > i are v x v matrices. Along

with the vectors W = (w1, ...,w,)T, w = (wy,...,w,)?, they can be represented by a double
Butcher tableau:
c| A c ‘ A
2.8
wT ‘ wT (28)
where the vectors ¢ = (¢1,...,6,)7, ¢ = (c1,...,c,)T are defined as
i—1 i
51‘ = CNLij, C; = Z aij. (29)
j=1 j=1

The tableau (2.8) must satisfy certain order conditions [15, 25]. According to the structure of
matrix A in the implicit tableau, one usually classifies the IMEX schemes into following categories
[4, 11]:

e Type A: if the matrix A is invertible.

e Type CK: if the matrix A can be written as

(0 5) 210

and the submatrix A € R&=Dx#=1) jg invertible; in particular, if the vector a = 0, wy = 0,
the scheme is of type ARS.

o If ay; = wy, Gy = Wy, i = 1,...,v, i.e., f7t = f0) the scheme is said to be globally
stiffly accurate (GSA).



2.3 The new IMEX-RK scheme with correction

We now propose to add a correction step to the standard IMEX scheme (2.7):

i—1
f(i):f”+AtZdij7' o +AtZa] Q(f9y, i=1,...,u, (2.11)
frit = f”+Atsz T() +At2wz Q(f), (2.12)
frtl = ol aAtQE%Q’(f*)Q(f"H), (2.13)

where f* can be chosen as f, f(, fr+1 or f7+1 g long as it is a first-order approximation to
fm = "+ O(At). The coefficients a;;, @;;, w;, w;, and a remain to be determined.

2.4 Second-order accuracy

Due to the extra correction step (2.13), the standard order conditions for the IMEX-RK
schemes need to be modified. In this subsection, we analyze the order conditions of (2.11)-
(2.13), up to second order, in the regime ¢ = O(1). Without loss of generality, we assume
e=1.

First, (2.11) gives

FO = 1 4 AT () + Ate; Q(F™) + O(A2), (2.14)

where we used f) = f* 4 O(At) and (2.9). Substituting it into (2.12) yields

frit= f”+Atsz (f™ + A& T(f") + At Q(f™))

i=1

+AEY W Q" + MET () + Ate; Q(fM)) + O(AE®)

i=1

—f”+Atsz (f™) + T (FUAET (f7) + Ate; Q(f™M)))]

=1

+ Atzwz (f") + Q" NAET (") + Ate; Q(f™))] + O(AL?)

| (Y a) T Z W) | + A (3w T/ ()T (")
i=1 i=1
szcz T'(f™)Q szcz Zw ¢)Q Q(f™M)| +o(At?),
i=1
(2.15)
where 77, Q" are the Fréchet derivatives of T and Q. The last step (2.13) implies
frt == aAPQ (FM)Q(F") + O(AF). (2.16)



Combining (2.15) and (2.16), we have

fr = A sz Zwl (f")

LA [ S @) T (T

Zwlcz T'(f"Q Zwlcl Zwlcz—a mMmam™ —|—O(At3).
(2.17)

On the other hand, if we Taylor expand the exact solution of (2.1) around time ¢", we have

Fahd = £ AT + QU™+ SARIT (T + T ()2

(2.18)
+Q(fMTU™) +Q (MM + O(A).
Comparing (2.17) with (2.18), we obtain the following order conditions:
izl =t (2.19)

v v v v 1
E 'LZ}ZEl = E ”lI)iCi = E ’LU151 = E W;C; — x = 5
i=1 i=1 i=1 i=1

Note that compared to the standard IMEX-RK order conditions [25], the only difference is the
term containing a.

2.5 Positivity-preserving property

In this subsection, we analyze the positivity-preserving property of the IMEX-RK scheme
(2.11)-(2.13). To this end, we assume f™ > 0, and derive conditions to insure f(), 7+ and
£t all non-negative.

First of all, we observe that if ", f(®, f"""l are all non-negative, then the last step (2.13)
preserves positivity of the solution provided a > 0. Indeed, (2.13) can be written as

(I—i—OéAtQ;QQ/(f*)Q) fn+1 — fn+17 (2.20)

then "1 > 0 follows directly from assumption (2.4) if f* = f7, f@ f*+1 and assumption
(2.5) if f* = fntl,

Next, we concentrate on the first two steps (2.11)-(2.12). To simplify the derivation, we
assume the IMEX-RK scheme is GSA, that is, f"“‘l = f), and consider type A and type ARS

schemes, respectively.
2.5.1 Type A and GSA schemes
From (2.11), we know
1—1

n i—1
(f“)— )_f Za” )—;aijig(f@) ,oi=1,...,v.  (2.21)

a‘Z’L



Using this relation recursively, we obtain

i—1
- (@) n b s (7)
L) = me (f9O — 1 >+;bwT(fﬂ ) (2.22)
where , 4
1 1 1—1 B 1 ) 1—1 ~
bii = ;, bij . 7; Zailblj, bij = ;(7&1']' — Z ailblj). (223)
1T T I=j i I=j+1

Then (2.11) can be rewritten as

J Jj—1

KZ A(FD =+ 3 b T(F©) +Atal Q)

=1 =1

i—1 i—1
f(i) = fn -+ AtZELUTOC(j)) + AtZaij
j=1 =1

i—1i—1 i—1 [ -1
n 1 i
— ZZaﬂbmf - Z O anbiy) f9 + At(a; + Z aubiy) T(f9) | + Atazi—Q(f),
Jj=11=j Jj=1 l=j l=j+1
i—1
= ciof" + Z I:Czjf(j) + Até; T(f(])):| + Ata;; - Q(Jf(i))7
j=1
(2.24)
where
1—1i—1
Cio ‘= 1- Z Zazlblj7 Cij 1= Zazlbl]7 Ci] = al] + Z azlblj (225)
Jj=11=j l=j+1
Thus
1 A i—1 ‘ ‘
(I — Ataiz'EQ) FO =ciof"+Y [cijf@) + Atéijﬂf(”)} : (2.26)
j=1
Therefore, to make f(*) > 0, using assumptions (2.2) and (2.3), it suffices to have
ai; >0, cp=>0, 1=1,...,v,
(2.27)
CijZO, &ijZOa i:2,...,V, ]:1, ,’L—l,
and the CFL condition is given by
At < csenC, (2.28)

where cgqp 18 the extra factor from the scheme, defined as
. Cij
Csch = min — 5, (2.29)
1=2,...,v Cij
Jj=1,...i—1
and the ratio is understood as infinite if the denominator is zero.

Remark 2.1. Requiring a;; > 0 rather than a; > 0 is to make sure the diagonal matriz A in
the implicit tableau (2.8) is invertible so the scheme is of type A.

Remark 2.2. Note that c;o —|—Zj 1 ¢ij = 1. Therefore, written in (2.24), the explicit part of the
scheme is a convex combination of forward Euler steps, which is the so-called Shu-Osher form
[28]. This enables us to derive some nice properties of the scheme that rely on convexity such as
entropy decay, see Section 3.2.



Remark 2.3. If T = Ta, is a discretized transport operator, the constraint é;; > 0 in (2.27) can
be removed by using downwinding [13]. This allows more freedom in choosing coefficients and
would possibly yield a better CFL condition. For simplicity, we do not consider this situation in

the current work.

We now write down explicitly the above positivity conditions for ¥ = 3 (the minimum stage
required for RK coefficients to exist). First, the double Butcher tableau (2.8) looks like

0 0 0 ail 0 0
a 0 0 0
C~l21 ) a21  a22 (2.30)
az az 0 as;  as2  ags
as;  asx 0 as; a3z a33
where the vectors ¢ and € are omitted. Then the positivity conditions (2.27) reduce to
e fori=1,
ail > Oa C10 = 1 2 07 (231)
e fori =2,
aze > 0, 02021—@207
o1 @i (2.32)
co1=—20, ¢1=ag 20,
ail
e fori =23,
ags >0, g =1 — 231 282021 452 o
ail Q220711 a22
0312@—%20, 0322@207 53120731—%207 C32 = azz > 0.
aii 22011 a22 22
(2.33)
2.5.2 Type ARS and GSA schemes
The analysis for type ARS schemes is similar. Note that since a;; = 0, f(1) = f".
First we recursively derive
1 & i—1
Z 0y — — (£ _ pn b () -
QU = & Db = M+ 3 b T i=2, (2.34)
j=2 j=1
where
1 1 i—1 B 1 i—1 N
b := P bij = —;Z@ilbm bij = ;(—aij - Z aiibiy). (2.35)
7 17 l:] 7 l:]—‘—l
Then (2.11) can be rewritten as
i—1 1
FO = leiof™ + Mo T(F)+ [cij F9 + Atey T ( fU))} + Ataii—Q(f1), (2.36)
j=2



where

i1 i1 i—1 i-1 it
cio :=1— Zzaublj, Cio == Qi + ) agbjr, ¢y = Zailblj7 Cij = Qij + Z airby;-
=2 1=j =2 [ 1=j+1
(2.37)
Therefore, to make f(*) > 0, using assumptions (2.2) and (2.3), it suffices to have
ai; >0, cio=>0, Co=>0, i=2,...,v,
(2.38)
c; >0, &;>0, i=3,...v, j=2..i-1,
and the CFL condition is given by
At < cenC, (2.39)
where
Csch = Min{  min ?ﬂ, “min fﬂ , (2.40)

1=2,..,v Cjn 1=3,...,V Cij
Jj=2,...,i—1

and the ratio is understood as infinite if the denominator is zero. Note that similar considerations
as pointed out in Remarks 2.1-2.3 apply here as well.

We now write down explicitly the above positivity conditions for v = 4 (the minimum stage
required for RK coefficients to exist). First, the double Butcher tableau (2.8) looks like

0 0 0 0 0 0
6121 0 0 a2 0 0
(~131 5432 0 asz2 ass 0 (241)

G41 Q42 Q43 G42 (43 Q44

ol © O O
oo ©O O o

G41 Q42 Q43 42 Q43 Q44

where the vectors ¢ and ¢ are omitted. Then the positivity conditions (2.38) reduce to

e fori=2,
a2 >0, cog=12>20, Co9=as >0, (242)
e for ¢ = 3,
a3 . . a32021
azgz3 >0, cz3=1-——2>0, cCzop=as ——— >0,
a22 a2 (2 43)
asz - - ’
Cs2 = — >0, ¢32=az2 >0,
22
e for i =4,
Q42 | 43032 (43 - - (42021 Q43031 = 043032021
ag4 >0, cyp=1——"+—"——2>0, C40=0a41 — — +
a22 33022 a33 a22 a33 33022
(42 43032 a43 . . (43032 - ~
Cgpo=———"20, cu3=—20, Cyo0=0ag2— >0, c43 =aq43 > 0.

a22 33022 a33 a33
(2.44)

10

>0

)



2.6 Combining order conditions and positivity conditions

Combining the results from Sections 2.4 and 2.5, we conclude that as long as one can find the
RK coefficients such that they satisfy the order conditions (2.19), positivity conditions (2.27)
(resp. (2.38)), and a > 0, the resulting scheme (2.11)-(2.13) would be both second-order accurate
and positivity-preserving. It turns out that such sets of coefficients are very easy to find. Below
we give two IMEX schemes, one of type A and GSA with v = 3 and one of type ARS and GSA
with v = 4. These coefficients are searched to yield a relatively large CFL constant cge,, but we

do not claim their optimality.

2.6.1 A second-order positivity-preserving type A and GSA scheme

A type A and GSA scheme of form (2.30):

az1 = 0.7369502715,

az1 = 0.3215281691, as2 = 0.6784718309,

a1 = 0.6286351712,

a21 = 0.2431004655, a9z = 0.1959392570,

az1 = 0.4803651051, asz> = 0.0746432814, a3z = 0.4449916135.

« in the correction step (2.13) and the CFL constant (2.29) are given by

a = 0.2797373792,  cscn = 0.5247457524.

2.6.2 A second-order positivity-preserving type ARS and GSA scheme

A type ARS and GSA scheme of form (2.41):

ag =0,

az1 = 1.0, asge =0,

Gar = 0.5, Gy =0, dys=0.5,
aso = 1.6,

ass = 0.3, az3 =0.7,

aq2 = 0.5, ay3 = 03, aq4 = 0.2.
« in the correction step (2.13) and the CFL constant (2.40) are given by
a=0.8, csn =0.8125.

Remark 2.4. For simplicity, we only give examples for second-order method. Following a
similar procedure in Section 2.4, it is not difficult to derive order conditions for third-order
method (see Appendiz). This, combined with the positivity conditions in Section 2.5, would yield

a third-order positivity-preserving scheme.

11
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Figure 1: Contours of the stability region S (2.47) at some fixed values of zo: Left: the type A

scheme given in Section 2.6.1; Right: the type ARS scheme given in Section 2.6.2.

2.7 Absolute stability

In this subsection, we analyze the absolute stability of the proposed IMEX scheme. We
consider the linear ODE
df

ar = Mf+Xf, MeC A<, (245)

and solve it by scheme (2.11)-(2.13), i.e.,

i—1 i

f(l) = fn + Atzaijhf(j) + Atz aij/\gf(j), t=1,...,v,
j=1 j=1

- d ) d ) 2.46

Frt= e MY i fO + A wida fD, (2.46)

=1 =1
fn+1 _ fn+1 _ aAtQ)\%fn—i-l.

Define z; = M\At, i = 1,2, then one can write f"™1 = P(zq,29)f", where P(z1,2) is the
amplification factor of the scheme. The absolute stability region of the scheme is defined as [23]:

S ={(z1,22) : |P(21,22)] < 1}. (2.47)

In Figure 1, we plot the stability regions of the two schemes given in Section 2.6. Here we
write z; = x + 4y, and plot the level sets SN {z2 = C} for different values of C' in the z,y plane.
One can clearly see that for both schemes, as z5 becomes more negative, the level sets are strictly
increasing. This suggests that the schemes are linearly stable, if the stability condition for the
explicit part (corresponding to the case zo = 0) is satisfied.

3 Application to the BGK equation

We now apply the previously derived general framework to the BGK equation (1.1). The
convection operator —v-V, and the collision operator ) correspond, respectively, to the operators
T and Q in the general setting (2.1). We have the following:

12



Proposition 3.1. The operators T(f) = —v -V, f and Q(f) = 74(M[f] — f) satisfy the as-
sumptions (2.2)-(2.5).

Proof. First of all, the operator 7 (f) can satisfy the assumption (2.2) if a positivity-preserving
spatial discretization is used (see Section 3.3).
To verify (2.3), note that

bryM[f] +9

(I-0Q)f =g <= f-bry(M[f] - f)=9 = [= 1+ b7

(3.1)
Taking the moments (- ¢) on both sides of the middle equation gives (f¢) = (g¢) since (f¢) =
(M[f]¢). Thus if g > 0, then 7, > 0, so 77 = 7, > 0. Then the last equation of (3.1) implies
f >0 for any constant b > 0.

We now compute Q'(g)Q(f):

Q' (g)0(f) = lim AIFIU) = Qo)

§—0 )

Since ((9 +6Q(f))¢) = ((g + o7 (M[f] = f))¢) = (9¢), so

Qg +0Q(f)) — Qlg) = 19(Mlg] — g — 6Q(f)) — 79(M[g] — g) = —740Q(f). (3.3)

Hence
L (9)Q(f) = —142(f)- (3-4)
Then
(I+bQ(9)Q)f =h < (I -b1,Q)f = h. (3.5)
If g > 0, then 7, > 0. Thus (2.4) follows from (2.3). To verify (2.5), note that

(I +0Q(f)Qf =h < (I-br;Q)f =h, (3.6)

from which we know (f¢) = (h¢). If h > 0, then 7y = 7, > 0. Thus (2.5) follows again from
(2.3). O

Therefore, applying the scheme (2.11)-(2.13) to the BGK equation, we get a second-order,
positivity-preserving method:

i—1 i
FO = =AY - Vo f9) +At2aij7f<” (M[f9D] = 9, i=1,....,
j=1 j=1 < (3.7

T
f.n+1 _ f(u) +OéAt2L2(M[fn+1] 7fn+1)’
e

where f* can be taken as f", any f or f"t!, and the coefficients @ij, aij, o and the CFL
constant cge, are given in Section 2.6. Note that we have restricted to GSA schemes to get
positivity, so there is no middle step f”“. Furthermore, due to the special structure (3.4) of the
BGK operator, the implementation of the correction step is just as easy as solving the collision

operator implicitly.
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Remark 3.2. The scheme (3.7) appears implicit since at every stage i one needs to compute
Ti, MIfD] first in order to evaluate f&) (also for the last step). This can be achieved by taking
the moments (- ) on both sides of the scheme:

i—1
(FD9) = (f76) = ALY @y Vo - (fDvg), i=1,....»,
= (3.8)

(f"1e) = (F¥9).
Hence one can obtain the macroscopic quantities p, u, T' at stage i first, which will define T

and M([fD)] (the last step is treated similarly). This idea has been used in several papers to solve
the BGK equation implicitly [10, 26, 12, 11].

3.1 Asymptotic-preserving (AP) property

There remains to prove the scheme (3.7) is AP. To this end, we discuss type A schemes and

type ARS schemes separately.

Proposition 3.3. If the IMEX scheme (3.7) is of type A and GSA, it is AP: for fivzed At, in
the limit € — 0, the scheme becomes a second-order explicit RK scheme applied to the limiting
Euler system (1.8).

Proof. We rewrite the first v steps of (3.7) using vector notations:
F = f"e — AtAv-V,F + AtAg(M[F] _F), (3.9)

where F := (f0 ... fONT e = (1,...,1)T, M[F] := (M[fM],..., M[f®])7, and 7 :=
diag(Tfm, e TEw) ). Now fixing At, formally passing the limit € — 01in (3.9), one has At AT (M[F]—
F) — 0. This implies F — M[F] since both A and 7 are invertible (the scheme is of type A and
positivity-preserving). Replacing F by M[F] in the moment system (3.8), we obtain

i—1
U® :U”—AtZaUvm-<M[f<j>]v¢>>, i=1,...,v,

Un+1 — U(D),

where U := (p, pu, E)T. This is a second-order explicit RK scheme applied to the compressible
Euler system (1.8). O

Proposition 3.4. If the IMEX scheme (3.7) is of type ARS and GSA, it is AP: for fived At
and consistent initial data f°© = M[f°], in the limit ¢ — 0, the scheme becomes a second-order
explicit RK scheme applied to the limiting Euler system (1.8). If the initial data is inconsistent,
the limiting scheme will degenerate to first order.

Proof. For the ARS scheme, f1) = f" and a = 0. Rewrite F = (f(l),ﬁ‘), e = (1,&), M[F] =
(M[fD], M[F]), 7 := diag(T¢@), ..., 7o), then (3.9) becomes

F = f'6— Atav- Vo f" — AtAv- V,F + Atflg(M[ﬁ‘} —F), (3.11)
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where we have used a similar notation for matrix A as that in (2.10):

00 3.12
a A)° (3.12)

Now fix At, let ¢ — 0, one has AtA7(M[F] — F) — 0. So F — MJF)] since both A and 7 are
invertible (the scheme is of type CK and positivity-preserving). Replacing F by M [];"} in the

moment system (3.8), we have
UD = U™ — Atan Vy - (f"v¢) — AtZa” Dog), i=2,...,u,
(3.13)
U’n,+1 — U(V),

which is a second-order explicit RK scheme applied to the compressible Euler system (1.8) if
f™ = M[f"]. On the other hand, the last step of (3.7) implies f**! — M[f"*1] as e — 0.
Therefore, as long as the initial data is consistent fO = M|[f°], the scheme is second order.

Otherwise, the initial data will bring an O(At) error and the scheme is reduced to first order. O

3.2 Entropy-decay property

It can be shown that the second-order scheme (3.7) satisfies an entropy-decay property if the
simple first-order upwind scheme is used for spatial derivative.
Consider the following 1D BGK equation for simplicity:

0uf +v0uf = ~(MIf] - 1), (314

for which we have the entropy inequality

d
E/ flog fdvdz < 0. (3.15)

Now assume that the velocity domain is truncated to a large enough symmetric interval

[—|v|max> [V|max] and the convection term vd, f is discretized by the first-order upwind scheme

(VO f)k = szov% + Xv<o? fk—Zx fk7 (3.16)

together with the periodic or compactly supported boundary condition in x. Then we claim that

the scheme (3.7) satisfies a discrete entropy inequality:
S[f < S, (3.17)

where the entropy S is defined as
= AwZ/s[fk] dv, with s[fx] := frlog fr. (3.18)
k

We prove it for type A and GSA schemes. Type ARS and GSA schemes can be treated similarly.
First applying (3.16) in (2.24) gives

B VAL . )
f = ciofr + Z {Cw - N [Xvzo( /g]) (J) )+ Xv<0(fk+1 Ig]))]
j=1

1 . ,
+Ataiig(M[ Jiz)} - /iz))a

(3.19)
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and the CFL condition (2.28) becomes

At < min { Gij } Ar . (3.20)
,J Cz] |U‘max
Note that (3.19) can be written equivalently as
i—1
i) " v| At v| At
]i ) = ciOfk + Z |:<cij - 1_7 |A| ) fk(;j) + Cij |A| [X’U>0f(])1 + X’U<0fk+1]:| ) (321)
i=1
i At e At i
Ig ) = (1 + Ean‘) (fk o+ ?@n’M[flg )]> : (3.22)
Recall that
a;; >0, ¢cp2>0, ¢;>20, ¢;=>0, cpo+ Zcij =1, (3.23)

]E-j)a and [XvZOf]gj_)l +Xu<0fk+1]

provided the CFL condition is satisfied. Since s[f] is a convex function for f > 0, by Jensen’s

hence the right hand side of (3.21) is a convex combination of f},

inequality, (3.21) after integration in v and summing over in & yields

v| At v|At
(Cij - Z]|A| )S[f( )] + Cij |A| AxZ/ Xv>()fk 1 +Xv<0f;£i)1] ] .
(3.24)

i—1

SO < S+

Jj=1

Notice that

A»’UZ/S[szoflgj,)l + Xv<0f;£j+)1] dv = sz {/ F9 og £ dv + f,gj log fkj) dv]
A L v v<0

>0

- sz [ - f;ij) log f,ff) dv + f,gj) log f,gj) dv] = S[f(j)]’
k v=0

v<0
(3.25)
thus .
SO < oS+ e SIFY). (3.26)
j=1
On the other hand, using the fact that!
SIM[FO)) < S[Y), (3.27)

from (3.22), which is also a convex combination, one has

—1 —1
S < (1+ Ha) (S04 LausprtrO) < (1 Faw) - (s107+ Hausir),
(3.28)
which implies
SIFO) < S, (3.29)

LAn easy way to show this is: [ MlogM dv — [ flog f dv = fflog]\;[ dv = ff[log% - %—1—1] dv <0,

where we used the fact that f and M have the same moments (f¢) = (M¢), and the inequality logz < z — 1 for
z > 0.
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Therefore,
i—1

SIFO) < SIM + ) e S, (3:30)
j=1
from which it follows easily that S[f*)] < S[f"]. Finally, the last step of (3.7) has the same
structure as (3.22), thus it can be shown in the same way that S[f"*1] < S[f(*)]. Altogether,
we have proved S[f"T1] < S[f"].

Remark 3.5. To the best of our knowledge, there is no second or high order fully discretized
scheme that satisfies an entropy-decay property for the BGK equation. The purpose of this
subsection is to illustrate that one can readily obtain a fully discretized second-order entropy-
decay scheme for the BGK equation provided a second-order entropy-decay spatial discretization

erists since the proposed time discretization is based on convex combinations.

3.3 Spatial and velocity domain discretizations

In this subsection, we describe in detail how to obtain a fully discretized scheme for the
BGK equation. We emphasize that it is not straightforward to apply the established techniques.
Special care needs to be given for both spatial and velocity domain discretizations in order to
maintain the properties (positivity and AP) of the semi-discretized scheme.

First of all, to preserve the positivity of the solution, a positivity-preserving spatial discretiza-
tion must be used for the convection term. One can use a high order accurate discontinuous
Galerkin or finite volume scheme with a high order accurate bound-preserving limiter by Zhang
and Shu in [31, 33]. Here we choose to use a finite volume method for z-variable and a finite
difference method for v-variable.

Consider solving the 1D BGK equation (3.14) with a possibly z-dependent Knudsen number
¢(x) (this is usually the case when handling a multiscale problem). We propose to conduct the
temporal discretization first and then the spatial and velocity discretizations. For simplicity, we
use the first-order IMEX scheme as an illustration (the high order IMEX can be implemented

in a similar fashion), which can be performed in three steps:

7f*;t ! +v0, f" =0, (3.31a)
U = (), M= MUY, (3:31b)

ntl _ 1 e, Atfe(@) oo
o= 1+ At/a(x)f * 1+ At/a(x)M i (3:31c)

where the middle step is to take the moments of f* to get macroscopic quantities U = (p, m, E)
which will define p, u, T', hence M[U] accordingly. Now define the grid points in = as z; 1=
(j + 2)Axz. After integration of the above scheme in x over the interval I; = [z;_1,2;,1] at the
grid point v = v, we obtain

* n n _ fmn
Fie = I Flvian = Fiajon

AT Az =0, (3.32a)
Un+l _ <f*¢>7 Mt = M[Un+l], (3.32b)

w1 L Atfe(x) .,
# =5 ], a0 DA e 6
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where f; denotes the cell average of f on the interval I; at k-th velocity grid point, Fjﬂ 2,k
is the numerical flux approximating vy f(¢,z,v;) at & = Tipl, and f7(z) and M;H'l(x) are
high order accurate reconstruction polynomials (reconstructed by the cell averages { f;k}jy:'”l
and {M]",;"1 ;V:ﬂ) approximating the functions f*(-,vx) and M"+1(- v;,) respectively.

In the following, we explain the details of the scheme (3.32) step by step.

3.3.1 Handling the convection term

First we discuss how to enforce the non-negativity of f in (3.32a). We omit the index k for
convenience. Given the cell averages f*, we use the fifth-order finite volume WENO reconstruc-
tion [27] to construct fifth-order accurate approximations f]:% and f];% to the point value f at
T=2j1 and t = t". Notice that fjjj_ 1 might be negative. There exists a degree four polynomial
p;(x) on the j-th cell, which is a fifth-order approximation to f on the cell, and satisfies the prop-
erty that the cell average of p;(z) is exactly f}', and p;(x;_1/2) = f;_—l/Q’ Pj(Tjp1/2) = f;H/Q.
For instance, such a polynomial can be obtained by interpolation, even though the construction
of this polynomial is not needed in the implementation. Then the four-point Gauss-Lobatto
quadrature fI' = Sy py(j.)w; s exact, where {z;, = Tj_1/2,%j2,T;)3,Tj4 = Tjp1/2} are the

44
such that Z?Zl w; = 1. Next by the simplified bound-preserving limiter for finite volume meth-

quadrature points, and {w;} are the corresponding quadrature weights on the interval |

ods described in [33], we modify p;(z) into

n

pi(x) = 0;(pj(x)—f;")+f}', 0; =min {|mif” ,1} ;o omy =min{p;(x;_1/2),0j(T41/2).&},
J J
(3.33a)
with I _
¢, = Pilziakes +pilaia)es B = Fmape — fipen (3.33b)

wo + W3 w2 + w3

The limiter (3.33) guarantees that fj;% = pjzj1) 2 0, f;r_% = pj(z;_1) =2 0 and § =
£ =1 =i jawn
-1 wa2tws

Ti+

; are still fifth-order accurate approximations to the the point value of f at z = z; 11, see
[31, 33, 30]. Since we only need fj;l and fjty the limiter (3.33) is equivalent to the following
2 2

> 0. Moreover, the quadrature f7' = E?:lﬁj(xj7l)wl is still exact and

2

implementation without using p;(z):

n

J
mj — [}

iy =05, —EN+ I T, =00, =+ 6= min{‘

3 J

,1} , (3.34a)

Ii = f;_—l/le - f]11/2w4

mj = min{f;fl/Z’fJ;rl/Q’gj}’ &= wa + w3 (3.34D)
Then we define the upwind flux as
~ ka‘ila ikaZ()a
N = Jts3 3.35
Iz {Uk {rl, if vy < 0. ( )
Jjts
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To see the positivity of f; in (3.32a) using (3.35), we only discuss the case vy, > 0 with the other
case being similar. We have

N N N ~ (WAN A N
i = Pi(ejoayp)wr +Bj(@j 11 2)wa + & (wa +ws)] = == (B (241/2) = Bj-1(25-1/2))
- - ’UkAt ~ UkAt - (336)
=pj(Tj_1/2)w1 + Pj(Tj41/2)(wWa — E) + (w2 +ws) + Txpj—l(%'—l/z),

which implies the positivity of f} since it is a convex combination of non-negative quantities
under the CFL condition “Z—ét <wy = 1—12

3.3.2 Handling the collision term

Now we describe how to compute M1 = M[U™!] under the finite volume discretization
in x. For convenience, we regard v as a continuous variable and omit the superscript n + 1.
Let U; be the moments of f;(v) > 0 on the j-th cell, then U; belongs to a convex set of
admissible states with positive density and temperature:
G—{(p,m,E)T:p>0, E;":>o}. (3.37)
Let {Z;;} (I = 1,2,3) denote the three-point Gauss-Legendre quadrature on the j-th cell
[2;_1,2;,1] and {w} (I = 1,2,3) be the corresponding quadrature weights on the interval
[f%, %], which is exact for integrating polynomials of degree five. Given cell averages of macro-
scopic quantities U; € G, we would like to reconstruct fifth-order approximations to U(x) at
x = I, denoted as Uj;,l = 1,2,3. Moreover, we need them to be positive so that M[U; ;] can
be well-defined; and conservative so that the final scheme is AP. Namely, we need
3
Ujs€G and Y iU, =Uj. (3.38)
=1
Such a reconstruction can be done in the following way. First, we construct a polynomial
Uj(x) of degree four, which is a fifth-order accurate approximation to U(x) on the interval I,
with U; as its cell average. There are many ways to construct such a polynomial, e.g., we can
first reconstruct two cell ends values by the WENO method then construct a Hermite type
reconstruction polynomial using these two point values and three averages U;_1,U;,Uj41, see

[31]. Thus ﬁ ff”% Uj(x)dz = U;. Second, we apply the simple positivity-preserving limiter
=3

in [32, 30] to U;(z) to obtain a modified polynomial U;(z) such that U;(Z,;) € G and the cell
average of U, (x) is still U;. Finally, we set U;; = U;(%;,), and we have

3 3
. N 1 i+l
S iU =Y wl;(F,,) = A—/ P Uj(z)dz = U;. (3.39)
=1 =1 Tla, o
Then M[U;,],l =1,2,3 are well-defined and we set
3
M; =Y " MU, (3.40)

1=1
This method is fifth-order in z, since the reconstruction is fifth-order and the positivity-preserving

limiter does not affect the accuracy. Also, this method is conservative:

3 3
(M;¢) =Y (MU )o) =Y inUss = U; = (f; ), (3.41)
=1 =1
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which is the key to obtain AP property.

3.3.3 Handling the variable ¢(z)

In the last step (3.32c) we need to compute an integral on I;, which can be approximated by

the Gauss-Legendre quadrature:

| . Atfe(x) .
/Ij [1+At/5(x) k(@) + 1+At/e(x)M’“+1($)] dz

At/e(@jn) o nti~
1 +At/€(.flj,l)Mk+ (xj’l)} '

3 ) (3.42)
~3 0| ey 00 +

Thus we only need the approximation of the functions f;(z) and M;""!(z) at the quadrature
points {Z;;} (I = 1,2,3). The values for M can be read directly from the previous step. The
construction of f can be done in the same way as we construct U;; € G in the previous section,
with the convex set G replaced by the set {f : f > 0}.

3.3.4 AP property of the fully discretized scheme

Now we show that the fully discretized scheme (3.32) is AP. As ¢ — 0, step (3.32¢) implies
3

Fr = D0 w30 = M (3.43)
=1

Hence after one time step, the solution is projected to the local Maxwellian. For n > 1, replacing
[ with M7, in (3.32a) and taking the moments gives

<;¢><Mpm+<MﬁUm—Mﬁﬂz¢>:Q

A7 AL (3.44)

where Mj_H/Q,k is the numerical flux approximating vy M (z,vx) at £ = 21, /0. Finally, using
(3.41), we have

(3.45)

wqﬂ@—uww»+<Mﬁum—M?uz¢>:O
At Az ’

This is a fully discretized kinetic scheme for the limiting Euler equations. Thus the scheme (3.32)
is AP.

4 Generalization to the hyperbolic relaxation system

The general framework presented in this paper can also be generalized to other problems that
have a similar structure, for instance, the hyperbolic relaxation system. We give one example
here.

The Broadwell model [5] is a simple discrete velocity kinetic model:

Oufs +0ufs = 23— 1 1)

Oufo=—2(f3 ~ f1fo), (1)

@ﬁ—mﬂ:hﬁfhﬁ»

o
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where ¢ is the mean free path, fi, fo, and f_ denote the mass densities of particles with speed

1, 0, and -1, respectively. The model can be written equivalently in terms of moment variables:

Op + Oym =0,

Oym + 0,z = 0, (4.2)
1

Oz + Opm = 2—5(p2 +m? — 2p2),

where p:= fL +2fo+ f_, m:=fr — f_,and 2z := f + f_. From (4.2), it is clear that when
2+m2
P -

system, an analog of the Euler limit:

e—>0,z— . This, substituted into the first two equations, yields a closed hyperbolic

Op + 0xm =0,

p* +m? ) . (4.3)

Similarly as the BGK model, it would be desirable to have a high order scheme for (4.1) that is
AP (can capture the limit (4.3) without resolving €) as well as maintains the positivity of the
solution (fy, fo, and f_ need to be non-negative by their physical meaning). We mention that [6]
proposed a second-order AP scheme for the Broadwell model but it is not positivity-preserving.
We now define f = (f4. fo /)7, T(f) = (—0s f1.0, 05 f)T and Q(f) = (f2— fu fo. —(fo—
fofo), f&— fif-)T. Then (4.1) falls into the general form (2.1). Define the matrix P as

2 1
0 -1, (4.4)
0 1

then Pf = (p,m,2)T, and PQ(f) = (0,0, 3(p* + m? — 2pz))7".

In order to apply the general framework, we need to verify the operators 7 and Q satisfy the
assumptions given in Section 2.1. The transport operator 7 can definitely satisfy the positivity
condition (2.2) provided a positivity-preserving spatial discretization is used. To analyze the
positivity conditions for Q, first notice that (I — bQ)f = g, upon multiplication of P on both
sides from the left, implies

Pf = Pg>

my = my, (4.5)
b

2 = 5pf +mj = 2p52f) = 2,

from which one has

= (50 4 ) /0400y, (16)

If g > 0, or equivalently, p, > z4 > |mg]|, then, to check f > 0 for any b > 0, it suffices to check
pf > zy and zy > |my|, which follow from

b
Q(P?_m?)"’/’f_zg _ %(pﬁ—mﬁ)ﬂ%g—zg

L= — >0, 47

Pr—2f 1+ bpy 1+ bpg = (4.7)

_ %(Pf - |mf|)2+zg — |my _ g(ﬂg_ |mg|)2+zg — |myg| >0 4.8

2y = Imsl = 1+ bpy - 1+0bp = (48)
g
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This proves (2.3). To show (2.4), notice that

Q' (9)Q(f) = —pg 1), (4.9)

and (2.4) follows from (2.3) since py > 0. Finally, for (2.5),
(1+bQ(£)Q)f =h <= (I—bprQ)f = h, (4.10)

which upon multiplication of P on the left gives p; = ps. If h > 0, py = pp, > 0. Then (2.5)
follows again from (2.3).

Therefore, the scheme (2.11)-(2.13) can be applied to the Broadwell model, resulting in a
second-order, positivity-preserving scheme. A similar AP property as for the BGK equation can
be proved straightforwardly using the (p, m, z) formulation (4.2). We omit the detail.

Finally, we briefly outline how to prove the entropy-decay property of the scheme when using
the upwind spatial discretization. The entropy for the Broadwell model is defined by

S[f] = A2 [f4rlog fok+2fonrlog for + f-klog f- k], (4.11)
k

where k is the spatial index. We show that S[f"*1] < S[f"].

First, the transport part can be done in the same way as (3.26). For the collision part,

f(’) = f(l)* + Ataing(f(l)), (4.12)
the entropy inequality for this step, namely, S[f)] < S[f("*], was proved in [6]. As for the last
step

n v 1 n
frtl — £ )+aAt2€—2pf*Q(f 1, (4.13)
if f* = f*or f®, ps. is a known non-negative constant, and the proof for (4.12) implies

S[f*H < S[fW)]; if f* = 71, one first takes the moment of (4.13) (i.e., multiply P on both
sides from the left) and gets
pfn+1 = pf(,,) Z 0, (414)

and then can obtain the same conclusion.

5 Numerical results

In this section we demonstrate numerically the properties of the proposed IMEX schemes.
We will solve the 1D BGK equation (3.14) in « € [0, 2] with periodic boundary condition (except

the test in Section 5.2, where the Dirichlet boundary condition is assumed), and in a large enough

velocity domain v € [—|V|max, [V|max]. The z-space is discretized into N, cells with Az = Nl

The v-space is discretized into N,, grid points with Av = 2'3\‘,& We fix the parameters N,, = 150
and |v|max = 15 such that the discretization error in v is much smaller than that in space and
time. We will test the two IMEX schemes given in Section 2.6. For brevity, in the following we

refer the scheme in Section 2.6.1 as scheme A, and the scheme in Section 2.6.2 as scheme ARS.
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5.1 Accuracy test

We first verify the second-order accuracy of the proposed schemes. We expect that 1) in the
kinetic regime € = O(1), both scheme A and scheme ARS are second-order accurate; 2) in the
fluid regime € < 1, for consistent initial data, both schemes exhibit second-order accuracy; for
inconsistent initial data, scheme A is still second order while scheme ARS will degrade to first
order (see Propositions 3.3 and 3.4).

We first consider inconsistent initial data
f(07 x, 'U) = 0~5Mp,u,T + 0.3Mp,70‘5u,T7 (51)
with

1

= 1 .2 i = ]_ e
P +02sin(rz), w=1, 1+ 0.2sin(7x)’

(5.2)

and compute the solution to time ¢ = 0.1. We choose different values of ¢, ranging from the
kinetic regime (¢ = 1) to the fluid regime (¢ = le — 10). We choose different Az and set
At = O.SWfoax, i.e., fix the CFL number as 0.5, which guarantees both schemes are stable.
(This CFL number is not small enough to guarantee positivity. We will consider the positivity-
preserving property in the following test. For the same reason, the positivity-preserving limiters
are turned off here.) Since the exact solution is not available, the numerical solution on a finer
mesh Az /2 is used as a reference solution to compute the error for the solution on the mesh of
size Ax:

errorat, Az = || fat,ae — fatjz,ans2llre - (5.3)

The results are shown in Tables 1 and 2. In all the results, the spatial error dominates for small
N, and the time error dominates for large N,. One can clearly see that in the kinetic regime
(e = 1,1e — 2), both schemes are second order; in the fluid regime (¢ = le — 8, 1e — 10), the
scheme A is second order and the scheme ARS is first order, as expected.

We also solve the equation in the intermediate and fluid regimes with a consistent initial data
f(07m,v) = Mp,u,Ta (54)

where p, u and T are the same as in (5.2). The results are shown in Tables 3 and 4. It is clear
that in the fluid regime both schemes remain second-order accuracy.

Note that there is always some extent of order reduction in the intermediate regime ¢ =
O(At). The uniform accuracy of IMEX schemes is an open problem and we do not attempt to
address this issue in the current work.

5.2 Positivity-preserving property
We now illustrate the positivity-preserving property of the scheme. Consider the initial data
f(O,m,v) = Mp,u,Ta (55)
with

(1,0,1), 0<z<1,

p,u,T) = 5.6
( ) { (0.125,0,0.25), 1<z <2. (5:6)
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Figure 2: Total number of negative cells for the ARS(2,2,2) scheme during time evolution. Blue
line: € = 1le — 6; Red line: ¢ = le — 8.

With the positivity-preserving limiters, the CFL coefficient of the spatial discretization is
1/12, that is, the constant C in (2.28) and (2.39) is 5 -22—. In view of both time and spatial

12 [v]max
1 Az
24 V| max

discretizations, we choose the time step as At = to satisfy the positivity CFL condition.
We take N, = &80.

The numerical solutions computed by both scheme A and scheme ARS exhibit no negative

cell averages and are omitted here. As a comparison, we solve the same equation with the same
initial data and spatial discretization, but using the ARS(2,2,2) scheme in time [1], which is
a standard second-order accurate IMEX scheme with no positivity-preserving property. The
number of negative cells (out of 80 x 150 = 12000 cells) is tracked and reported in Figure 2. One
can see that a significant number of cell averages become negative in the fluid regime, if the time

discretization is not positivity-preserving.

5.3 AP property

Finally, to illustrate the AP property, we solve the BGK equation in a mixed regime. We
take € = e(x) as follows:

e(x) = eg + (tanh(l — 11(z — 1)) 4+ tanh(1 4+ 11(x — 1))), &9 = le — 5, (5.7)

as shown in Figure 3. The ¢ is chosen such that in the middle part of the domain, the problem is
in the kinetic regime (e(z) = O(1)); while in the left and right parts, the problem is in the fluid
regime (¢ = le — 5). To handle this multiscale problem, one can use the domain decomposition
approach, i.e., solve the BGK equation in the kinetic regime and the Euler equations in the
fluid regime. But identifying the interface and coupling conditions between two regimes is a
challenging task. An alternative approach is to solve the BGK equation exclusively in the entire
domain. But to insure stability, an explicit scheme would require the time step to resolve the

smallest value of € which is extremely expensive. This is where the AP scheme shows its power:
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Figure 3: Profile of £(x) in a mixed regime problem.

it is a consistent scheme to the kinetic equation when ¢ = O(1), and will automatically become
a consistent scheme for the fluid equation when € — 0.

We take the same initial data as in (5.1)-(5.2) and solve the problem using scheme A and
scheme ARS with N, = 40. We compare the macroscopic quantities at time ¢ = 0.5 with a
reference solution computed by the explicit second-order SSP RK scheme [28] with N, = 80.
Note that for AP schemes, At = iﬁ ~ T7e — b; while for the explicit SSP scheme, At =
Ti()\vﬁﬁ ~ Te — 6 which needs to resolve €. One can see that the solutions of AP schemes agree

well with the reference solution in Figure 4.

6 Conclusion

We have introduced a family of second-order IMEX schemes for the BGK equation. The
method is asymptotic-preserving: it reduces to a second-order explicit RK scheme for the com-
pressible Euler equations as the Knudsen number ¢ — 0. Meanwhile, the method is positivity-
preserving, provided the time step satisfies a CFL condition independent of €. The method also
satisfies an entropy-decay property when coupled with proper spatial discretizations. The key
idea is to add a correction step to the conventional IMEX RK schemes. Due to the special struc-
ture of the BGK operator, this step maintains both positivity and AP property, and is very easy
to implement. We considered two types of commonly used IMEX RK schemes (one of type A and
one of type ARS) and constructed two examples, one of each type respectively. We investigated,
both analytically and numerically, the properties of the proposed schemes. Furthermore, we
showed that it is possible to generalize the method to some hyperbolic relaxation system such as
the Broadwell model which demands positivity, and provided a strategy to extend the method to
third order. Some future work include the construction of high-order asymptotic-preserving and
positivity-preserving schemes for other kinetic models, for example, the Fokker-Planck equation,
the full Boltzmann equation, etc.
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Figure 4: Mixed regime problem. Left to right: density p, velocity u and temperature 7.
Solid line: reference solution computed by the second-order SSP RK scheme. Dots: solution
computed by scheme A. The result of scheme ARS is omitted since it is indistinguishable from
that of scheme A in the picture.

Appendix: Extension to third order

In this Appendix, we briefly present the strategy to extend the proposed method to third
order.
To this end, we need to derive order conditions of the scheme (2.11)-(2.13) up to third order.
We consider the cases that f* = fm, fo+! or fot1,
Substituting (2.14) into (2.11), one obtains
i1

FO =" w Ay T(f" + AteT(f") + Ate; Q(f™))

j=1

+AEY a Q" + AtET(f7) + Ate; Q(f") + O(AL)

j=1

g Ati as[T(F™) + AT (f) @G T () + ¢ 0(f™)]
T (6.1)
n Atz ai [Q(f") + AtQ (f*) (& T (f") + ¢, Q(f™))] + O(AL?)

= "+ AHET (") + ¢ Q(f™)] + At? i ai; T'(f™) (& T(f") 4 ¢, Q(f™))

+2 i @ (UMEGTU™) + Q™) | +O0(Ar).
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Substituting it into (2.12) yields

Frt =+ At lez {f” + AHET (") + Q™) + A2 EaijT'(f”>(éjT<f"> +¢;Q(f"))
+§_:1 Q(fMET(f™) + cjg<f”>>] }
+ AtZwl {f" + AET (™) + ¢ Q(f™)] + At? 12:1%7" (fEGT™) + e Q(f™)
+Z Q(f)EGT (™) +¢;Q(f™) } +0(At")
="+ At (g i) T ( Zwl (f™)| + A Zwlcz YT (f)T szcl )T (f")Q(f™)
+<i w;&) Q' (" Zwlq f“)]
+ At {};Zﬁ Wi & T (f)T (FOT (") + Widyes T (FT (FQ(™)]
+ Z Zl @iy & T (f1)Q (ST (™) + Biaize; T'(f)Q (f) Q)]
+3 Z [ T (F)(T(F™), T(™) + 2sie T (f)T (), Q™) + wicies T (F71)(Q(F™), Q™))
n ZZ wiaig &5 (T (PTG + widge; @ ()T () Q™)
" Z Z Wit @ (P Q T + wiasge; @ (7 Q () Q™)
+§ Z wi&i& Q" (f)NT (™), T(f™) + 2widies @ () (T("), Q™) + wieies Q" (F1)(Q(F™), Q(f"))]}
+ O(At4),

(6.2)

where the second-order Fréchet derivative is given by

Q" (g)(f1. f2) =

51 52—>0

Qg +01f1) — Qg + 02f2) + Qlg)
0102 ’

Qg+ 01fr +d2f2) —

(6.3)

which is a symmetric bilinear operator.
In the case f* = f™, (2.13) gives (using the first order conditions Y ._, w; = > o _; w; = 1)

fn+1 fn—i-l

— fn+1 _

aAQ (fM)Q(f" + AUT(f") + Q(f™))) + O(At?)
aA? Q' (f")Q(f") ~

o(AtY),
(6.4)

QAPIQ/(F)Q (T + QM (M QU™) +
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while in the case f* = f*+1 or fnt1

JrE = P AEQ ([ + AT + QUMNQUT + AUT(S™) + Q™) + O(At)
= [ = aAEQ () Q") abEQ (ST (). Q) + @' (1)), &)
+QUMQUMTU™) + (LU +O(At?)
(6.5)

On the other hand, if we Taylor expand the exact solution of (2.1) around time ¢™, we have
et = " AT (") + Q(f™)] + %AtZ[T’(f")T(f”) + T + QUMTU™) + ("))
+ %At‘g[’f”(f")(’f(f"), T™) +2T7(f)NQU™). T(UM) + T (") (), Q™))

+QN(MTU), TU™) +2Q7(F)(QU™), T(fM) + Q7 (f")(Q(™), Q™))
(T + Q) (f"NT + Q' (f")T + Q)] + O(At?).

(6.6)
Comparing (6.6) with (6.4) or (6.5), we obtain the following order conditions:
E ’lj)idijéj = E ﬁ]idijcj‘ = E u?iaijéj = E wiaijcj
~ 1
:E W;A;5C; = E W;A;5C; = E W;a;Cj — = E W;aA;;Cj — Q0 = =5
T
7 (6.7)
§ W;CiC; = E WiCiC; = E WiCiC;
i i
- - 1
=3 widiti =Yy widic; = Y wicic; = 3’
in the case f* = f™, and
E w;ai;C; = E W;Gi;Cj = E W;ti;C; = E W;a;i;Cy
- 1
= E W;A;iCj = E w;a;jCj = E W;a;jCj — Q= E W;a;jCj — Q= 5
7 (6.8)

E W;CiC; = E W;iCiC; = E W;CiC;
i A
s . 1
= E W;CiC; = E W;C;C; — Qv = E W;C;C; — 200 = §7

in the case f* = fntl or frti,

Note that compared to the standard IMEX-RK (third) order conditions [25], the only differ-
ence is the terms containing a.

Therefore, in order to get a third-order positivity-preserving scheme, one only needs to find
RK coefficients in (2.11)-(2.13) such that they satisfy the order conditions (2.19) and (6.7) (resp.
(6.8)) as well as the positivity conditions derived in Section 2.5 (o > 0 and (2.27) for type A
and GSA schemes or (2.38) for type ARS and GSA schemes). This can be done via a computer
program.
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6¢

Nx=10 Nx=20 order Nx=40 order Nx=80 order Nx=160 order Nx=320 order Nx=640 order Nx=1280 order
e=1e+00 | 5.60e-04 5.91e-05 3.25 4.33e-06 3.77 2.11e-07 4.36  1.29¢e-08 4.03 2.94e-09 2.13 7.42¢-10 1.99  1.86e-10  2.00
e=1e-02 | 4.67e-04 4.63e-05 3.33 7.11e-06 2.70 1.67e-06 2.09 4.22¢-07 1.99 1.06e-07 1.99 2.67e-08 1.99  6.69¢-09  2.00
e=le-04 | 4.67e-04 3.62¢e-05 3.69 3.31e-06 3.45 2.92¢-06 0.18 3.03e-06 -0.05 2.79¢-06 0.12 1.52¢-06 0.88  5.46e-07  1.47
e=1e-06 | 4.67e-04 3.65e-05 3.68 2.46e-06 3.89 1.09e-07 4.49 6.58e-09 4.06 4.71e-09 0.48 8.30e-09 -0.82 1.44e-08 -0.80
e=1e-08 | 4.67e-04 3.65e-05 3.68 2.46e-06 3.89 1.10e-07 4.49 6.28¢-09 4.13 1.45e-09 2.11 3.67e-10 1.98  9.20e-11  2.00
e=le-10 | 4.67e-04 3.65e-05 3.68 2.46e-06 3.89 1.10e-07 4.49 6.28¢-09 4.13 1.45e-09 2.11 3.68e-10 1.98  9.20e-11  2.00

Table 1: Accuracy test. Scheme A. Inconsistent initial data.

Nx=10 Nx=20 order Nx=40 order Nx=80 order Nx=160 order Nx=320 order Nx=640 order Nx=1280 order
e=1e+00 | 5.60e-04 5.91e-05 3.25 4.33e-06 3.77 2.12e-07 4.36 1.22e-08 4.11 2.71e-09 2.17 6.83e-10 1.99 1.71le-10  2.00
e=1e-02 | 5.02e-04 9.82e-05 2.35 2.89e¢-05 1.76 8.14e-06 1.83 2.17¢-06 1.91 5.59e-07 1.95 1.42e-07 1.98  3.58¢-08  1.99
e=le-04 | 4.70e-04 3.71e-05 3.66 4.82e-06 2.94 2.35e-06 1.04 2.00e-06 0.23 2.94e-06 -0.56 2.99e-06 -0.02 1.76e-06 0.76
e=1e-06 | 4.70e-04 3.71e-05 3.66 4.79e-06 2.95 2.21e-06 1.12 1.12e-06 0.99 5.58e-07 1.00 2.79e-07 1.00 1.40e-07  1.00
e=1e-08 | 4.70e-04 3.71e-05 3.66 4.79¢-06 2.95 2.21e-06 1.12 1.12¢-06 0.99 5.58e-07 1.00 2.79¢-07 1.00  1.40e-07  1.00
e=le-10 | 4.70e-04 3.71e-05 3.66 4.79e-06 2.95 2.21e-06 1.12 1.12e-06 0.99 5.58e-07 1.00 2.79e-07 1.00 1.40e-07  1.00

Table 2: Accuracy test. Scheme ARS. Inconsistent initial data.




0€

Nx=10 Nx=20 order Nx=40 order Nx=80 order Nx=160 order Nx=320 order Nx=640 order Nx=1280 order
e=le-04 | 1.04e-03 1.0le-04 3.38 8.05e-06 3.64 4.17e-06 0.95 4.76e-06 -0.19 4.46e-06 0.10 2.40e-06 0.89  8.54e-07  1.49
e=1e-06 | 1.05e-03 1.0le-04 3.37 7.64e-06 3.73 4.79e-07 4.00 1.83e-08 4.71 6.16e-09 1.58 1.11e-08 -0.85 1.94e-08 -0.80
e=1e-08 | 1.05e-03 1.0le-04 3.37 7.64e-06 3.73 4.79e-07 3.99 1.82e-08 4.72 1.52e-09 3.58 4.03e-10 1.92  1.03e-10  1.97
e=le-10 | 1.05e-03 1.0le-04 3.37 7.64e-06 3.73 4.79e-07 3.99 1.82e-08 4.72 1.52e-09 3.58 4.03e-10 1.92  1.02e-10 1.98

Table 3: Accuracy test. Scheme A. Consistent initial data.

Nx=10 Nx=20 order Nx=40 order Nx=80 order Nx=160 order Nx=320 order Nx=640 order Nx=1280 order
e=le-04 | 1.04e-03 1.0le-04 3.37 7.62e-06 3.73 1.24e-06 2.62 2.65e-06 -1.09 4.51e-06 -0.77 4.56e-06 -0.02 2.67e-06 0.78
e=1e-06 | 1.05e-03 1.0le-04 3.37 7.64e-06 3.73 4.79e-07 3.99 1.82e-08 4.72 1.60e-09 3.50 9.94e-10 0.69 1.67e-09 -0.75
e=1e-08 | 1.05e-03 1.0le-04 3.37 7.64e-06 3.73 4.79e-07 3.99 1.82e-08 4.72 1.52e-09 3.58 4.03e-10 1.92  1.02e-10  1.97
e=le-10 | 1.05e-03 1.0le-04 3.37 7.64e-06 3.73 4.79e-07 3.99 1.82e-08 4.72 1.52e-09 3.58 4.03e-10 1.92  1.02e-10 1.98

Table 4: Accuracy test. Scheme ARS. Consistent initial data.




References

[1]

[10]

[11]

[14]

[15]

U. Ascher, S. Ruuth, and R. Spiteri. Implicit-explicit Runge-Kutta methods for time-
dependent partial differential equations. Appl. Numer. Math., 25:151-167, 1997.

C. Bardos, F. Golse, and D. Levermore. Fluid dynamic limits of kinetic equations. I. Formal
derivations. J. Stat. Phys., 63:323-344, 1991.

P. L. Bhatnagar, E. P. Gross, and M. Krook. A model for collision processes in gases.
I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev.,
94:511-525, 1954.

S. Boscarino, L. Pareschi, and G. Russo. Implicit-explicit Runge-Kutta schemes for hyper-
bolic systems and kinetic equations in the diffusion limit. SIAM J. Sci. Comput., 35:A22—
A51, 2013.

J. Broadwell. Shock structure in a simple discrete velocity gas. Phys. Fluids, 7:1013-1037,
1964.

R. E. Caflisch, S. Jin, and G. Russo. Uniformly accurate schemes for hyperbolic systems
with relaxation. STAM J. Numer. Anal., 34:246-281, 1997.

C. Cercignani. The Boltzmann Equation and Its Applications. Springer-Verlag, New York,
1988.

C. Cercignani. Rarefied Gas Dynamics: From Basic Concepts to Actual Calculations. Cam-
bridge University Press, Cambridge, 2000.

A. Chertock, S. Cui, A. Kurganov, and T. Wu. Steady state and sign preserving semi-
implicit Runge-Kutta methods for ODEs with stiff damping term. SIAM J. Numer. Anal.,
53:2008-2029, 2015.

F. Coron and B. Perthame. Numerical passage from kinetic to fluid equations. SIAM J.
Numer. Anal., 28:26-42, 1991.

G. Dimarco and L. Pareschi. Asymptotic preserving implicit-explicit Runge-Kutta methods
for nonlinear kinetic equations. SIAM J. Numer. Anal., 51:1064-1087, 2013.

F. Filbet and S. Jin. A class of asymptotic-preserving schemes for kinetic equations and
related problems with stiff sources. J. Comput. Phys., 229:7625-7648, 2010.

S. Gottlieb, D. Ketcheson, and C.-W. Shu. Strong Stability Preserving Runge-Kutta and
Multistep Time Discretizations. World Scientific, 2011.

S. Gottlieb, C.-W. Shu, and E. Tadmor. Strong stability-preserving high-order time dis-
cretization methods. SIAM Rewv., 43:89-112, 2001.

E. Hairer. Order conditions for numerical methods for partitioned ordinary differential
equations. Numer. Math., 36:431-445, 1981.

31



[16]

[17]

[18]

[19]

[30]

[31]

I. Higueras. Strong stability for additive Runge-Kutta methods. SIAM J. Numer. Anal.,
44:1735-1758, 2006.

I. Higueras and T. Roldan. Positivity-preserving and entropy-decaying IMEX methods.
Monografias del Seminario Matematico Garcia de Galdeano, 33:129-136, 2006.

J. Hu, S. Jin, and Q. Li. Asymptotic-preserving schemes for multiscale hyperbolic and
kinetic equations. In R. Abgrall and C.-W. Shu, editors, Handbook of Numerical Methods
for Hyperbolic Problems, chapter 5, pages 103-129. North-Holland, 2017.

J. Huang and C.-W. Shu. A second-order asymptotic-preserving and positivity-preserving
discontinuous Galerkin scheme for the Kerr-Debye model. Math. Models Methods Appl. Sci.,
27:549-579, 2017.

S. Jin. Asymptotic preserving (AP) schemes for multiscale kinetic and hyperbolic equations:
a review. Riv. Mat. Univ. Parma, 3:177-216, 2012.

A. Jungel. Transport Equations for Semiconductors, volume 773 of Lecture Notes in Physics.
Springer, Berlin, 2009.

C. Kennedy and M. Carpenter. Additive Runge-Kutta schemes for convection-diffusion-
reaction equations. Appl. Numer. Math., 44:139-181, 2003.

R. J. LeVeque. Finite Difference Methods for Ordinary and Partial Differential Equations.
SIAM, Philadelphia, PA, 2007.

G. Naldi, L. Pareschi, and G. Toscani, editors. Mathematical Modeling of Collective Behavior
in Socio-Economic and Life Sciences. Birkhauser Basel, 2010.

L. Pareschi and G. Russo. Implicit-Explicit Runge-Kutta methods and applications to
hyperbolic systems with relaxation. J. Sci. Comput., 25:129-155, 2005.

S. Pieraccini and G. Puppo. Implicit-Explicit schemes for BGK kinetic equations. J. Sci.
Comput., 1:1-28, 2007.

C.-W. Shu. Essentially non-oscillatory and weighted essentially non-oscillatory schemes for
hyperbolic conservation laws. In Advanced numerical approzimation of nonlinear hyperbolic
equations, pages 325—432. Springer, 1998.

C.-W. Shu and S. Osher. Efficient implementation of essentially non-oscillatory shock-
capturing schemes. J. Comput. Phys., 77:439-471, 1988.

C. Villani. A review of mathematical topics in collisional kinetic theory. In S. Friedlander
and D. Serre, editors, Handbook of Mathematical Fluid Mechanics, volume I, pages 71-305.
North-Holland, 2002.

X. Zhang. On positivity-preserving high order discontinuous Galerkin schemes for com-
pressible Navier—Stokes equations. J. Comput. Phys., 328:301-343, 2017.

X. Zhang and C.-W. Shu. On maximum-principle-satisfying high order schemes for scalar
conservation laws. J. Comput. Phys., 229:3091-3120, 2010.

32



[32] X. Zhang and C.-W. Shu. On positivity-preserving high order discontinuous Galerkin
schemes for compressible Euler equations on rectangular meshes. J. Comput. Phys.,
229:8918-8934, 2010.

[33] X. Zhang and C.-W. Shu. Maximum-principle-satisfying and positivity-preserving high-
order schemes for conservation laws: survey and new developments. In Proceedings of
the Royal Society of London A: Mathematical, Physical and Engineering Sciences, page
rspa20110153. The Royal Society, 2011.

33



