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Abstract

For the initial value problem of scalar conservation laws, a bound-preserving

property is desired for numerical schemes in many applications. Traditional

methods to enforce a discrete maximum principle by defining the extrema as

those of grid point values in finite difference schemes or cell averages in finite

volume schemes usually result in an accuracy degeneracy to second order around

smooth extrema. On the other hand, successful and popular high order accu-

rate schemes do not satisfy a strict bound-preserving property. We review two

approaches for enforcing the bound-preserving property in high order schemes.

The first one is a general framework to design a simple and efficient limiter for

finite volume and discontinuous Galerkin schemes without destroying high or-

der accuracy. The second one is a bound-preserving flux limiter, which can be

used on high order finite difference, finite volume and discontinuous Galerkin

schemes.
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1. Introduction

The unique entropy solution u(x, t) to the initial value problem of the scalar

conservation law,

ut +∇ · F(u) = 0, u(x, 0) = u0(x), (1)

satisfies a strict maximum principle,

min
x
u(x, s) ≤ u(x, t) ≤ max

x
u(x, s), ∀t > s,

thus a bound-preserving property minx u0(x) ≤ u(x, t) ≤ maxx u0(x). For nu-

merical schemes solving (1), it is desired to have a numerical solution unj satis-

fying the bound-preserving property

min
x
u0(x) = m ≤ unj ≤M = max

x
u0(x), (2)

since solutions outside of [m,M ] might be meaningless, such as negative per-

centage and probability distribution larger than one. Moreover, violation of

certain bounds in numerical solutions may contribute to instability for systems

of equations, e.g., negative density and negative pressure in gas dynamics equa-

tions.

The first order accurate E-schemes including Godunov, Lax-Friedrichs and

Engquist-Osher methods satisfy an entropy inequality and are total-variation-

diminishing (TVD) thus maximum-principle-satisfying. However, any TVD

scheme or TVD limiter in the sense of measuring the variation of grid point

values or cell averages is at most first order accurate around smooth extrema,

see Harten (1983); Osher and Chakravarthy (1984), although these schemes can

be designed for any formal order of accuracy for smooth monotone solutions,

e.g., the high resolution schemes.

For finite difference and finite volume schemes, a popular approach to achieve

bound-preserving is to enforce a discrete maximum principle

min
j
unj ≤ un+1

j ≤ max
j
unj , (3)

2



where un denotes numerical solutions at time step n, and unj denotes the point

value of at j-th point in a finite difference scheme or the cell average on j-th

cell in a finite volume scheme. Schemes satisfying (3) can be at most second

order accurate around extrema, see a simple proof in Zhang and Shu (2011a);

Shu (2012). There are many second order accurate schemes satisfying (3) or (2)

in the literature, e.g., Bell et al. (1988); Chavent and Cockburn (1989); Colella

(1990); Liu (1993); Batten et al. (1996); Jiang and Tadmor (1998); Hubbard

(1999); Kurganov and Tadmor (2000); Bouchut (2004); Guermond et al. (2014);

Guermond and Nazarov (2014).

One heuristic explanation of why (3) prohibits higher order than second or-

der accuracy is due to the numerical extrema defined as those of grid point

values, without including the high order information between two adjacent grid

points. Towards higher order accurate schemes, we can measure the extrema in

numerical solutions as extrema of approximation polynomials, e.g., reconstruc-

tion polynomials in a finite volume scheme. To this end, we can consider an

improved discrete maximum principle,

min
j

min
x
unj (x) ≤ un+1

j (x) ≤ max
j

max
x

unj (x). (4)

where uj(x) denotes the reconstruction polynomial on j-th cell in a finite volume

scheme. See Sanders (1988); Liu and Osher (1996); Zhang and Shu (2010a) for

third and higher order accurate schemes satisfying (4). However, these schemes

used the exact time evolution to enforce (4). Unfortunately, it is very difficult,

if not impossible, to implement such exact time evolution for multi-dimensional

nonlinear scalar equations or systems of conservation laws.

Successful and popular high order accurate methods solving (1) include,

among others, the Runge-Kutta discontinuous Galerkin (RKDG) method with

a total variation bounded (TVB) limiter in Cockburn and Shu (1989); Cock-

burn et al. (1989), the essentially non-oscillatory (ENO) finite volume and finite

difference schemes, e.g. Harten et al. (1987); Shu and Osher (1988), and the

weighted ENO (WENO) finite volume and finite difference schemes, e.g., Liu

et al. (1994); Jiang and Shu (1995). These schemes are nonlinearly stable in nu-
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merical experiments and some of them can be proven to be total variation stable,

but they are not strictly bound-preserving. To construct high order accurate

bound-preserving schemes for multi-dimensional nonlinear equations, instead of

enforcing a discrete maximum principle (4), we may consider to enforce only a

discrete bound-preserving constraint in a high order scheme. In this paper, we

will review two approaches to enforce (2) on these popular high order schemes.

2. A bound-preserving limiter for approximation polynomials

We first review the framework of constructing bound-preserving finite vol-

ume and DG schemes in Zhang and Shu (2010b); Zhang et al. (2012); Zhang

and Shu (2011a). For simplicity, we only review the main idea for the one-

dimensional version of (1):

ut + f(u)x = 0, u(x, 0) = u0(x). (5)

2.1. First order monotone schemes

Consider a first order scheme with the form

un+1
j = unj − λ[f̂(unj , u

n
j+1)− f̂(unj−1, u

n
j )] ≡ Hλ(unj−1, u

n
j , u

n
j+1), (6)

where λ = ∆t
∆x with ∆t and ∆x being the temporal and spatial mesh sizes, and

f̂(a, b) is a monotone flux, which is Lipschitz continuous in both arguments, non-

decreasing in the first argument and non-increasing in the second argument, and

consistent f̂(a, a) = f(a). Under suitable CFL conditions, typically of the form

max
u
|f ′(u)|λ ≤ 1, (7)

Hλ(a, b, c) is non-increasing in all three arguments, and consistency of f̂ im-

plies Hλ(a, a, a) = a. For example, consider the Lax-Friedrichs flux f̂(u, v) =

1
2 [f(u) + f(v)− α(v − u)] with α = max |f ′(u)|, then Hλ(unj−1, u

n
j , u

n
j+1) in the

scheme (6) can be rewritten as

Hλ(unj−1, u
n
j , u

n
j+1) = (1− λ)unj +

1

2
λ(αunj+1−f(unj+1))+

1

2
λ(αunj−1 +f(unj−1)),
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which is non-increasing in all three arguments under the constraint (7). There-

fore we have the strict maximum principle (3) thus the bound-preserving prop-

erty

m = Hλ(m,m,m) ≤ un+1
j = Hλ(unj−1, u

n
j , u

n
j+1) ≤ Hλ(M,M,M) = M.

2.2. The weak monotonicity in high order finite volume schemes

By Godunov’s theorem, a linear scheme that is monotone can be at most

first order accurate. However, a high order finite volume or DG scheme with a

monotone flux for solving (5) satisfies a weak monotonicity property.

We first discuss the forward Euler temporal discretization in this subsection

and leave higher order temporal discretization to Section 2.4. The finite volume

method or the scheme satisfied by the cell averages in the DG method can be

written as:

un+1
j = unj−λ[f̂(u−

j+ 1
2

, u+
j+ 1

2

)−f̂(u−
j− 1

2

, u+
j− 1

2

)] ≡ Gλ(unj , u
−
j+ 1

2

, u+
j+ 1

2

, u−
j− 1

2

, u+
j− 1

2

),

(8)

where unj is the approximation to the cell averages of u(x, t) in the cell Ij =

[xj− 1
2
, xj+ 1

2
] at time level n, f̂(·, ·) is a monotone flux, and u−

j+ 1
2

, u+
j+ 1

2

are the

high order approximations of the nodal values u(xj+ 1
2
, tn) within the cells Ij

and Ij+1 respectively. For simplicity we assume the mesh is uniform, but the

methodology does not have a uniform or smooth mesh restriction.

The function Gλ(a, b, c, d, e) in (8) is not a monotonically increasing func-

tion for any positive time step. Its partial derivatives with respect to b and e

are always non-positive, which implies that there exist unj , u−
j+ 1

2

, u+
j+ 1

2

, u−
j− 1

2

,

u+
j− 1

2

∈ [m,M ] such that un+1
j /∈ [m,M ] in (8) for any λ > 0. In other words,

to ensure un+1
j ∈ [m,M ] in (8), we need more constraints on the data unj , u−

j+ 1
2

,

u+
j+ 1

2

, u−
j− 1

2

, u+
j− 1

2

other than that they should be in the range [m,M ].

Suppose there is a polynomial pj(x) (either reconstructed in a finite volume

method or evolved in a DG method) with degree k ≥ 1, defined on Ij such that

unj is the cell average of pj(x) on Ij , u
+
j− 1

2

= pj(xj− 1
2
) and u−

j+ 1
2

= pj(xj+ 1
2
).

Let N = b(k + 3)/2c, i.e., N is smallest integer satisfying 2N − 3 ≥ k. We
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consider an N -point Legendre Gauss-Lobatto quadrature rule on the interval

Ij = [xj− 1
2
, xj+ 1

2
], which is exact for the integral of polynomials of degree up to

2N − 3. Denote these quadrature points on Ij as

Sj = {xj− 1
2

= x̂1
j , x̂

2
j , · · · , x̂N−1

j , x̂Nj = xj+ 1
2
}. (9)

Let ω̂µ be the N -point Legendre Gauss-Lobatto quadrature weights for the

interval [− 1
2 ,

1
2 ] then

N∑
µ=1

ω̂µ = 1 and ω̂1 = ω̂N = 1
N(N−1) . We have

unj =
1

∆x

∫
Ij

pj(x) dx =

N∑
µ=1

ω̂µpj(x̂
µ
j ) =

N−1∑
µ=2

ω̂µpj(x̂
µ
j ) + ω̂1u

+
j− 1

2

+ ω̂Nu
−
j+ 1

2

.

(10)

After plugging (10) in, the scheme (8) can be rewritten as

un+1
j =

N−1∑
µ=2

ω̂µpj(x̂
µ
j ) + ω̂N

(
u−
j+ 1

2

− λ

ω̂N

[
f̂
(
u−
j+ 1

2

, u+
j+ 1

2

)
− f̂

(
u+
j− 1

2

, u−
j+ 1

2

)])
+ω̂1

(
u+
j− 1

2

− λ

ω̂1

[
f̂
(
u+
j− 1

2

, u−
j+ 1

2

)
− f̂

(
u−
j− 1

2

, u+
j− 1

2

)])
=

N−1∑
µ=2

ω̂µpj(x̂
µ
j ) + ω̂NHλ/ω̂N (u+

j− 1
2

, u−
j+ 1

2

, u+
j+ 1

2

) + ω̂1Hλ/ω̂1
(u−
j− 1

2

, u+
j− 1

2

, u−
j+ 1

2

).

(11)

Let ω̂ = ω̂1 = ω̂N , then Hλ/ω̂ is monotone under the CFL condition

max
u
|f ′(u)|λ ≤ ω̂ =

1

N(N − 1)
, (12)

thus un+1
j in (11) is a monotonically increasing function of all the arguments

involved, namely u−
j− 1

2

, u+
j+ 1

2

and pj(x̂
µ
j ) for 1 ≤ µ ≤ N , which is the weak

monotonicity property for a high order spatial discretization (8). We have the

following result on bound-preserving,

Theorem 1. Consider a finite volume scheme or the scheme satisfied by the cell

averages of the DG method (8), associated with the approximation polynomials

pj(x) of degree k (either reconstruction or DG polynomials) in the sense that

unj = 1
∆x

∫
Ij
pj(x)dx, u+

j− 1
2

= pj(xj− 1
2
) and u−

j+ 1
2

= pj(xj+ 1
2
). A sufficient
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condition for un+1
j ∈ [m,M ] is

u±
j− 1

2

, u±
j+ 1

2

, pj(x̂
µ
j ) ∈ [m,M ], µ = 2, · · · , N − 1, (13)

under the CFL condition (12).

Remark 1. The sufficient condition (13) involves point values pj(x̂
µ
j ) for µ =

2, · · · , N − 1, which are not available in typical ENO and WENO finite volume

reconstructions since the polynomial pj(x) is not reconstructed in ENO and

WENO. We can use interpolation to construct an approximation polynomial

pj(x) as in Zhang and Shu (2010b). A better method is to avoid explicitly using

point values pj(x̂
µ
j ) for µ = 2, · · · , N − 1. Since

∑N−1
µ=2

ω̂µ
1−2ω̂pj(x̂

µ
j ) is a convex

combination of point values pj(x̂
µ
j ) for µ = 2, · · · , N − 1, by the Mean Value

Theorem, there exists some point x∗j ∈ Ij such that

N−1∑
µ=2

ω̂µ
1− 2ω̂

pj(x̂
µ
j ) = pj(x

∗
j ).

We can rewrite (11) as

un+1
j = (1−2ω̂)pj(x

∗
j ) + ω̂Hλ/ω̂(u+

j− 1
2

, u−
j+ 1

2

, u+
j+ 1

2

) + ω̂Hλ/ω̂(u−
j− 1

2

, u+
j− 1

2

, u−
j+ 1

2

),

thus we can use the following weaker sufficient condition to replace (13),

u±
j− 1

2

, u±
j+ 1

2

, pj(x
∗
j ) ∈ [m,M ], (14)

where pj(x
∗
j ) can be computed as pj(x

∗
j ) = 1

1−2ω̂ (unj − ω̂1u
+
j− 1

2

− ω̂Nu−j+ 1
2

) by

(10), even though the location x∗j is unknown. See Zhang and Shu (2011a); Cai

et al. (2015); Zhang (2016)

2.3. A simple and efficient scaling limiter

The weak monotonicity and Theorem 1 suggest that it is possible to ren-

der a high order conservative finite volume or DG scheme bound-preserving

if we can control certain point values. To enforce the sufficient condition

(13) or (14), we first consider the simple scaling limiter introduced in Liu

and Osher (1996). Given piecewise polynomials pj(x) on each interval Ij =
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[xj− 1
2
, xj+ 1

2
] approximating a smooth function u(x) ∈ [m,M ], with the cell av-

erages pj = 1
∆x

∫
Ij
pj(x) dx ∈ [m,M ], we seek a modified approximation polyno-

mial p̃j(x) satisfying p̃j(x) ∈ [m,M ] for any x ∈ Ij , with the same cell average

1
∆x

∫
Ij
p̃j(x) dx = 1

∆x

∫
Ij
pj(x) dx. For instance, if pj(x) is the L2 projection of

u(x) ∈ [m,M ] onto the vector space of polynomials of degree k on the interval

Ij , then we have pj ∈ [m,M ] but not necessarily pj(x) ∈ [m,M ] for any x ∈ Ij .

The following limiter was first discussed in Liu and Osher (1996):

p̃j(x) = θ
[
pj(x)− pj

]
+ pj , θ = min

{
1,

∣∣∣∣M − pjMj − pj

∣∣∣∣ , ∣∣∣∣ m− pjmj − pj

∣∣∣∣} , (15a)

Mj = max
x∈Ij

pj(x),mj = min
x∈Ij

pj(x). (15b)

It is obvious that p̃j(x) ∈ [m,M ] for any x ∈ Ij and the cell average of p̃j(x)

is still pj . Moreover, this simple limiter does not destroy the approximation

accuracy of pj(x).

Theorem 2. For the modified polynomial of degree k in the limiter (15), we

have |pj(x)− p̃j(x)| ≤ Ck maxx∈Ij |pj(x) − u(x)|, where Ck is a constant de-

pending only on the polynomial degree k.

Proof. We only need to discuss the case that pj(x) is not a constant and

θ =
∣∣∣ M−pjMj−pj

∣∣∣. The other cases are similar. Since pj ≤M and pj ≤Mj , we have

θ = (M − pj)/(Mj − pj). Therefore,

p̃j(x)− pj(x) = θ[pj(x)− pj ] + pj − pj(x)

= (θ − 1)[pj(x)− pj ]

=
M −Mj

Mj − pj
[pj(x)− pj ]

= (M −Mj)
pj(x)− pj
Mj − pj

.

Thus |p̃j(x) − pj(x)| ≤ |M −Mj |
∣∣∣pj(x)−pj
Mj−pj

∣∣∣ . The assumption θ =
∣∣∣ M−pjMj−pj

∣∣∣ im-

plies the overshoot Mj > M . Suppose pj(x
∗∗) = Mj for some x∗∗ ∈ Ij , then

u(x∗∗) ≤ M < Mj = pj(x
∗∗). Thus we have |M −Mj | ≤ |u(x∗∗) − pj(x∗∗)| ≤
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maxx∈Ij |pj(x) − u(x)|. We only need to show
∣∣∣pj(x)−pj
Mj−pj

∣∣∣ ≤ Ck. Consider a

new polynomial q(x) = pj

(
x∆x+ xj− 1

2

)
− pj . Then q =

∫ 1

0
q(x) dx = 0,

max
x∈[0,1]

q(x) = max
x∈Ij

pj(x)− pj and min
x∈[0,1]

q(x) = min
x∈Ij

pj(x)− pj . We have

∣∣∣∣pj(x)− pj
Mj − pj

∣∣∣∣ =
|q(x)|

max
x∈[0,1]

q(x)
≤

max
x∈[0,1]

|q(x)|

max
x∈[0,1]

q(x)
= max


max
x∈[0,1]

q(x)

max
x∈[0,1]

q(x)
,

− min
x∈[0,1]

q(x)

max
x∈[0,1]

q(x)

 .

Thus we only need to prove
max
x∈[0,1]

|q(x)|

max
x∈[0,1]

q(x) ≤ Ck or

∣∣∣∣ min
x∈[0,1]

q(x)

max
x∈[0,1]

q(x)

∣∣∣∣ ≤ Ck. For quadratic

polynomials k = 2 in one dimension, Ck = 3 was proven by explicit calculations

in Liu and Osher (1996). For general k and higher dimensions, there are two

different kinds of proof. The first proof is similar to proving the equivalence of

two norms in a finite-dimensional Banach space.

Lemma 3. Let q(x) be a non-constant polynomial of degree k with
∫ 1

0
q(x) dx =

0, then
max
x∈[0,1]

|q(x)|

max
x∈[0,1]

q(x)
≤ Ck,

where Ck is a constant depending only on k.

Proof. Let V denote the finite dimensional vector space consisting of all poly-

nomials of degree k whose averages on the interval [0, 1] are zero. For any

q(x) ∈ V , define three functional on V by f1[q] =

∣∣∣∣ max
x∈[0,1]

q(x)

∣∣∣∣ = max
x∈[0,1]

q(x),

f2[q] =

∣∣∣∣ min
x∈[0,1]

q(x)

∣∣∣∣ = − min
x∈[0,1]

q(x) and f0[q] = max
x∈[0,1]

|q(x)| = max{f1[q], f2[q]}.

Let ei (i = 1, · · · , k) be a basis of V . For any vector c =
[
c1 · · · ck

]T
∈ Rk,

define f j(c) = fj

[∑
i

ciei

]
for j = 0, 1, 2. Notice that f0[·] is a norm of V and

can be denoted as f0[q] = ‖q‖∞ on the interval [0, 1].

For any p(x), q(x) ∈ V , f1 satisfies the following properties (similar ones

hold for f2):

1. ∀a > 0, f1[aq(x)] = max
x∈[0,1]

aq(x) = af1[q(x)].

2. f1[−q] =

∣∣∣∣ max
x∈[0,1]

−q(x)

∣∣∣∣ = max
x∈[0,1]

−q(x) = − min
x∈[0,1]

q(x) = f2[q].
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3. f1[p+ q] = max
x∈[0,1]

(p+ q) ≤ max
x∈[0,1]

p+ max
x∈[0,1]

q = f1[p] + f1[q].

4. f1[q] = 0⇒ q ≡ 0.

Thus, for any c, d ∈ Rk, we have

f1(c) ≤ f1(d) + f1(c− d) ≤ f1(d) + f0(c− d),

and

f1(c) ≥ f1(d)− f1(d− c) = f1(d)− f2(c− d) ≥ f1(d)− f0(c− d),

which implies

|f1(c)−f1(d)| ≤ f0(c−d) = f0

[∑
i

(ci − di)ei

]
≤
∑
i

|ci−di|‖ei‖∞ ≤
√∑

i

|ci − di|2
√
‖ei‖2∞.

Therefore, f1(c) is uniformly continuous w.r.t. the variable c. Notice that the

unit sphere S1 = {c ∈ Rk : ‖c‖ = 1} is a compact set, so f1 attains its maximum

and minimum values on S1:

D1 ≤ f1(d) ≤ D2, ∀d ∈ S1,

where D1 and D2 are constants. If there exists d ∈ S1 such that f1(d) = 0,

then d = 0 by Property 4 above, which is a contraction to d ∈ S1 . So we have

D1 > 0. By Property 1, we get f1(c/‖c‖) = f1(c)/‖c‖, thus we have

0 < D1‖c‖ ≤ f1(c) ≤ D2‖c‖, ∀c ∈ Rk, c 6= 0.

Notice that f0(c) is a norm of Rk, thus by the equivalence of any two norms of

R
k, we get

0 < D3‖c‖ ≤ f0(c) ≤ D4‖c‖, ∀c ∈ Rk, c 6= 0.

Therefore, for q =
∑
i ciei, we have

max
x∈[0,1]

|q(x)|

max
x∈[0,1]

q(x)
=
f0[q]

f1[q]
=
f0(c)

f1(c)
≤ D4

D1
.
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Lemma 4. Let q(x) be a non-constant polynomial of degree k with
∫ 1

0
q(x) dx =

0, then ∣∣∣∣∣∣
max
x∈[0,1]

q(x)

min
x∈[0,1]

q(x)

∣∣∣∣∣∣ ≤ (k2 + k − 1)Λk+1[0, 1],

where Λk+1[0, 1] = max
x∈[0,1]

k+1∑
j=1

|lj(x)| is the Lebesgue constant with lj(x) (j =

1, · · · , k + 1) being the Lagrange interpolation polynomials at the (k + 1)-point

Gauss-Lobatto quadrature points on the interval [0, 1].

Proof. Let M ′ = max
x∈[0,1]

q(x) and m′ = min
x∈[0,1]

q(x) then M ′ > 0 and m′ < 0. If

M ′ ≤ −m′, then
∣∣∣M ′m′ ∣∣∣ ≤ 1. We only need to discuss the case M ′ > −m′.

Let x̄j (j = 1, · · · , k+1) denote the (k+1)-point Gauss-Lobatto quadrature

points for the interval [0, 1] and ω̄j (j = 1, · · · , k + 1) denote the corresponding

weights. Then this quadrature is exact for integration of polynomials of degree

k. Since lj(x) (j = 1, · · · , k+1) are the Lagrange interpolation polynomials, we

have

q(x) =

k+1∑
j=1

q(x̄j)lj(x).

Let M ′′ = maxj q(x̄j) and m′′ = minj q(x̄j). If q(x̄j) = 0 for all j, then

q(x) =
k+1∑
j=1

q(x̄j)lj(x) = 0, which is impossible for a non-constant polynomial

q(x). On the other hand,
∑k+1
j=1 ω̄jq(x̄j) =

∫ 1

0
q(x)dx = 0. Thus we have

m′′ < 0 < M ′′. So we get

q(x) ≤
k+1∑
j=1

|q(x̄j)||lj(x)| < max{M ′′,−m′′}
k+1∑
j=1

|lj(x)|.

Thus M ′ < max{M ′′,−m′′} max
x∈[0,1]

k+1∑
j=1

|lj(x)| = max{M ′′,−m′′}Λk+1[0, 1]. So

we have

m′ ≤ m′′ < 0 < M ′ < max{M ′′,−m′′}Λk+1[0, 1].

Without loss of generality, assume q(x̄1) = maxj q(x̄j) = M ′′. Since
k+1∑
j=1

ω̄jq(x̄j) =

11



0, we get ω̄1M
′′ = ω̄1q(x̄1) = −

k+1∑
j=2

ω̄jq(x̄j) ≤ −
k+1∑
j=2

ω̄jm
′′ = −m′′

k+1∑
j=2

ω̄j , thus

M ′′

−m′′
≤ 1

ω̄1

k+1∑
j=2

ω̄j ≤
1

min
j
ω̄j

k+1∑
j=2

ω̄j ≤
1−min

j
ω̄j

min
j
ω̄j

.

Therefore,

0 <
M ′

−m′
≤ max{M ′′,−m′′}Λk+1[0, 1]

−m′′
≤ max

{
M ′′

−m′′
, 1

}
Λk+1[0, 1] ≤

1−min
j
ω̄j

min
j
ω̄j

Λk+1[0, 1],

where
1−min

j
ω̄j

min
j
ω̄j

=
1− 1

(k+1)k
1

(k+1)k

= k2 + k − 1.

Remark 2. We can replace Gauss-Lobatto quadrature rule by other (k + 1)-

point quadrature rules with positive weights in Lemma 4. The proof in Lemma

4 is constructive with the constant Ck given explicitly. But to extend the proof

in Lemma 4 to a generic cell in higher dimensions, we need to construct a proper

quadrature rule with positive weights. On the other hand, the proof Lemma 3

can be easily extended to any kind of cells in higher dimensions.

In practice, the limiter (15) is not very interesting since evaluating maximum

and minimum of high order polynomials in (15b) is computationally demanding

especially in high dimensions. Fortunately, we only need to enforce bounds at

some points in (13) or (14). A practical limiter is (15) with Mj and mj redefined

as

p̃j(x) = θ
[
pj(x)− pj

]
+ pj , θ = min

{
1,

∣∣∣∣M − pjMj − pj

∣∣∣∣ , ∣∣∣∣ m− pjmj − pj

∣∣∣∣} , (16a)

Mj = max
x∈Sj

pj(x),mj = min
x∈Sj

pj(x), (16b)

where Sj are Gauss-Lobatto quadrature points (9). The simplified limiter (16)

was first used in Zhang and Shu (2010b) to enforce the sufficient conditions (13)

in high order finite volume and DG schemes with monotone fluxes solving scalar

conservation laws.

12



To enforce (14), we can first compute pj(x
∗
j ) = 1

1−2ω̂ (unj −ω̂1u
+
j− 1

2

−ω̂Nu−j+ 1
2

)

then use a more relaxed limiter with Mj and mj redefined as

p̃j(x) = θ
[
pj(x)− pj

]
+ pj , θ = min

{
1,

∣∣∣∣M − pjMj − pj

∣∣∣∣ , ∣∣∣∣ m− pjmj − pj

∣∣∣∣} , (17a)

Mj = max
x̂1
j ,x̂

N
j ,x̂
∗
j

pj(x),mj = min
x̂1
j ,x̂

N
j ,x̂
∗
j

pj(x). (17b)

Since (15) is a more stringent limiter than (16) and (17), Theorem 1 also applies

to the simplified limiters (16) and (17).

We remark that it is straightforward to define an optimal limiter in terms

of accuracy as an optimization problem, i.e., finding a polynomial p̃j(x) to

minimize ‖p̃j(x) − pj(x)‖ under the constraints
∫
Ij
p̃j(x) dx =

∫
Ij
pj(x) dx and

p̃j(x̂
µ
j ) ∈ [m,M ]. But solving these optimization problems accurately is much

more computationally demanding. See Guba et al. (2014) for such a limiter.

2.4. SSP high order time discretizations

For high order time discretizations, we can use a strong stability preserving

(SSP) Runge-Kutta or multistep method Gottlieb et al. (2009), which is a convex

combination of several formal forward Euler steps. For example, let d
dtuh =

L(uh) denote a semi-discrete scheme with high order spatial discretizations by

a finite volume or DG method, then the third order SSP Runge-Kutta method

is given by,

u
(1)
h = unh + ∆tL(unh),

u
(2)
h = 3

4u
n
h + 1

4 (u
(1)
h + ∆tL(u

(1)
h )),

un+1
h = 1

3u
n
h + 2

3 (u
(2)
h + ∆tL(u

(2)
h )).

(18)

If the forward Euler (8) is bound-preserving, then so are the high order SSP

methods due to the convex combinations. Early works using SSP methods

to construct high order bound-preserving schemes include Perthame and Shu

(1996).

To render a high order finite volume or DG scheme bound-preserving, we

should use a SSP time discretizations such as (18) and a monotone flux f̂ . Then

13



in each time stage in a Runge-Kutta method or each time step of a multi-step

method, we should use the simple limiter (16) or (17).

2.5. Extensions and applications

All discussions in this section can be extended to high dimensions in a

straightforward way, see Zhang and Shu (2010b); Zhang et al. (2012); Zhang

and Shu (2011a). This framework has been widely used to construct high or-

der schemes which are positivity-preserving for important problems including

compressible Euler equations Zhang and Shu (2010c, 2012b, 2011b); Wang et al.

(2012), passive convection such as 2D incompressible Euler equations Zhang and

Shu (2010b); Zhang et al. (2012), shallow water equations Xing et al. (2010);

Xing and Shu (2011); Xing and Zhang (2013), MHD equations Cheng et al.

(2013b), Vlasov-Boltzmann equations Cheng et al. (2012), Vlasov-Poisson sys-

tem Heath et al. (2012); Qiu and Shu (2011b); de Dios et al. (2012); Cheng

et al. (2013a), Lagrangian and semi-Lagrangian schemes Rossmanith and Seal

(2011); Qiu and Shu (2011a); Guo et al. (2014); Cheng and Shu (2014); Vi-

lar et al. (2016a,b), curvilinear coordinates Endeve et al. (2015), population

models Zhang et al. (2011), transport on a sphere Zhang and Nair (2012),

extended magnetohydrodynamics equations Zhao et al. (2014), Fokker-Planck

equations Liu and Yu (2014), spray and particle transport Larat et al. (2012),

pressureless Euler system Yang et al. (2013), relativistic hydrodynamics Qin

et al. (2016), streamer discharge simulation Zhuang and Zeng (2014), turbulent

cosmology flows Zhu et al. (2013), and other interesting applications Du et al.

(2015); Franquet and Perrier (2012); Sabat et al. (2014), etc. Entropy bound-

preserving schemes are constructed in Zhang and Shu (2012a); Lv and Ihme

(2015). Realizability-preserving DG and WENO schemes are constructed in Ol-

brant et al. (2012); Alldredge and Schneider (2015); Schneider et al. (2016) for

moment closures of kinetic equations. See Zhang (2016) for recent progress on

preserving positivity of density and pressure (or internal energy) in compressible

Navier-Stokes equations.
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3. Bound-preserving flux limiters

In this section, we briefly review the Flux-corrected type bound-preserving

limiters within the framework of high order conservative approximation of the

scalar conservation laws in one dimension (5).

3.1. Basic idea and framework

The bound-preserving flux limiting approach is to seek a convex combina-

tion of the first order monotone flux with the high order flux, in the hope of

that such combination can achieve both bound-preserving property high order

accuracy under certain conditions, e.g. some mild time step constraint. To

achieve this goal, the numerical fluxes have to be modified subject to both

bound and accuracy constraint. The foundation of this family of approach can

be found in Boris and Book (1973) and improved by Zalesak (1979). The origi-

nal Boris-Book-Zalesak method is to enforce (3) thus such schemes are at most

second order accurate around smooth extrema. The flux limiting approach by

Xu (2014); Hu et al. (2013); Xiong et al. (2016) can be viewed as a generaliza-

tion of the flux-corrected transport method to the high order schemes for scalar

conservation laws and compressible Euler systems. For scalar conservation laws,

only (2) is enforced in Xu (2014), which makes high order accuracy possible.

To illustrate the basic idea, for simplicity, we consider the conservative high

order finite difference approximation of (5) with uniform spatial discretization.

The main goal here is to achieve the bound-preserving property (2). Fully dis-

cretized conservative high order approximation of the 1D scalar conservation

law (5) generally assumes the form of

un+1
j = unj − λ(Ĥj+ 1

2
− Ĥj− 1

2
) (19)

with numerical fluxes Ĥj± 1
2

obtained from high order spatial reconstruction and

temporal integration. For example, the third order SSP Runge-Kutta temporal
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integration (18) can be written as

u
(1)
j = unj + ∆tL(un),

u
(2)
j = unj + ∆t(

1

4
L(un) +

1

4
L(u(1))),

un+1
j = unj + ∆t(

1

6
L(un) +

2

3
L(u(2)) +

1

6
L(u(1))). (20)

We note that the second term on the right hand side of equation (20) approx-

imates
∫ tn+1

tn
L(u(τ))dτ . Here L(un)

.
= − 1

∆x (Ĥn
j+ 1

2

− Ĥn
j− 1

2

) is the high order

spatial derivative approximation and Ĥn
j+ 1

2

is the numerical flux obtained from

high order reconstruction from un Shu and Osher (1988). Similarly, Ĥ
(1)

j+ 1
2

and

Ĥ
(2)

j+ 1
2

are the numerical fluxes reconstructed from the intermediate values u(1)

and u(2). It is obvious that the equation (20) is consistent with the description

by the form (19) when

Ĥj+ 1
2

.
=

1

6
Ĥn
j+ 1

2
+

2

3
Ĥ

(2)

j+ 1
2

+
1

6
Ĥ

(1)

j+ 1
2

.

Based on the formulation (19), the parametrized bound-preserving flux limiters

are proposed to replace the original high order flux Ĥj+ 1
2

by the modified one

H̃j+ 1
2

= θj+ 1
2
(Ĥj+ 1

2
− ĥj+ 1

2
) + ĥj+ 1

2
(21)

so that the bound-preserving property (or positive bounds for the matter of

compressible Euler computation) is satisfied by the new scheme

un+1
j = unj − λ(H̃j+ 1

2
− H̃j− 1

2
). (22)

Here ĥj+ 1
2

is the previously discussed first order monotone flux which preserves

the global upper and lower bound. To complete the modification of the fluxes, it

requires identifying the parameters θj+ 1
2
. Through (22), the bound-preserving

constraint m ≤ un+1
j ≤ M induces a group of linear inequalities that θj+ 1

2
’s

have to satisfy. In Section 3.2, we provide the steps for finding such parameters.

We refer to the earlier work Zalesak (1979); Xu (2014); Liang and Xu (2014);

Xiong et al. (2013) for the detailed process to decouple those inequalities for

θj+ 1
2
’s explicitly in multi-dimensions.
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The flux limiting procedure described above is investigated by Xiong et al.

(2013) with application to high order finite difference computation of incom-

pressible flow problems. Different from the successive bound-preserving limit-

ing procedure proposed by Xu (2014) for internal stages of a third order SSP

Runge-Kutta method, this approach is very general in the sense that it can be

applied to any high order method with explicit RK or Lax-Wendroff type inte-

gration. It is much simpler to implement. Moreover, the time step restriction to

ensure both bound-preserving property and high order accuracy in both space

and time is less severe compared with that proposed by Xu (2014).

The parametrized flux limiter has been applied to the semi-Lagrange finite

difference WENO computation of Vlasov equations Xiong et al. (2014). It is

also generalized to high order finite difference WENO schemes solving com-

pressible Euler equations to preserve positivity of quantities such as density,

pressure and energy by Xiong et al. (2016) and solving MHD equations within

constraint transport framework Christlieb et al. (2015b). It is also implemented

on unstructured mesh Christlieb et al. (2015a). Compared with the polynomial

scaling limiters Zhang and Shu (2010b); Zhang et al. (2013), the advantage of

the flux limiting approach is for high order finite difference solving conservation

laws and for high order schemes solving convection diffusion problems as evi-

denced by Jiang and Xu (2013); Wu and Tang (2015); Jiang et al. (2015); Xiong

et al. (2015). The convenience for solving the convection-diffusion equation is

due to that its high order approximation can be cast into the conservative form

(21).

However, the major difficulty is to prove that the original high order accuracy

is not comprised by the flux limiters in general. Error analysis is performed

Xiong et al. (2013) to prove the retainment of third order spatial and temporal

accuracy when the high order flux is limited toward a first order local Lax-

Friedrich flux or Godunov flux. The proof relies on tedious algebraic calculation

and verification. Proof is not available for more general cases such as high order

spatial and temporal accuracy for general high order schemes, high dimensional

conservation laws, and for the incompressible flow. In the absence of systematic
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analysis, extensive numerical evidences are provided Xiong et al. (2013) to show

the retainment of high order accuracy with chosen CFL numbers.

3.2. Decoupling for the flux limiting parameters

Since identifying the limiting parameters is the main component of the family

of the Flux-corrected type numerical methods, we include the detailed procedure

of designing θj+ 1
2

here. The description follows Xu (2014) for the convenience

of discussing the flux limiters for the high order methods with the global bound.

For each θj+ 1
2

limiting the numerical flux Ĥj+ 1
2
, we are looking for upper bounds

Λ− 1
2 ,Ij

and Λ+ 1
2 ,Ij

from the need of keeping un+1
j within [m,M ]. Consequently,

θj+ 1
2
∈ [0,Λ+ 1

2 ,Ij
] ∩ [0,Λ− 1

2 ,Ij+1
], ∀j (23)

provides a sufficient condition for the scheme to preserve the bound. Let

ΓMj = M − uj + λ(ĥj+ 1
2
− ĥj− 1

2
), Γmj = m− uj + λ(ĥj+ 1

2
− ĥj− 1

2
),

then from the bound-preserving property of a first order monotone scheme,

ΓMj ≥ 0, Γmj ≤ 0.

To ensure un+1
j ∈ [m,M ] with H̃j+ 1

2
as in equation (22), it is equivalent to

require

λθj− 1
2
(Ĥj− 1

2
− ĥj− 1

2
)− λθj+ 1

2
(Ĥj+ 1

2
− ĥj+ 1

2
)− ΓMj ≤ 0, (24)

λθj− 1
2
(Ĥj− 1

2
− ĥj− 1

2
)− λθj+ 1

2
(Ĥj+ 1

2
− ĥj+ 1

2
)− Γmj ≥ 0. (25)

The discussion is case by case based on the sign of

Fj± 1
2

.
= Ĥj± 1

2
− ĥj± 1

2
.

1. Assume

θj− 1
2
∈ [0,ΛM− 1

2 ,Ij
], θj+ 1

2
∈ [0,ΛM+ 1

2 ,Ij
],

where ΛM− 1
2 ,Ij

and ΛM
+ 1

2 ,Ij
are designed to preserve the upper bound by

equation (24).
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(a) If Fj− 1
2
≤ 0 and Fj+ 1

2
≥ 0,

(ΛM− 1
2 ,Ij

,ΛM+ 1
2 ,Ij

) = (1, 1).

(b) If Fj− 1
2
≤ 0 and Fj+ 1

2
< 0,

(ΛM− 1
2 ,Ij

,ΛM+ 1
2 ,Ij

) = (1,min(1,
ΓMj

−λFj+ 1
2

+ ε
)).

(c) If Fj− 1
2
> 0 and Fj+ 1

2
≥ 0,

(ΛM− 1
2 ,Ij

,ΛM+ 1
2 ,Ij

) = (min(1,
ΓMj

λFj− 1
2

+ ε
), 1).

(d) If Fj− 1
2
> 0 and Fj+ 1

2
< 0,

• If equation (24) is satisfied with (θj− 1
2
, θj+ 1

2
) = (1, 1), then

(ΛM− 1
2 ,Ij

,ΛM+ 1
2 ,Ij

) = (1, 1).

• If equation (24) is not satisfied with (θj− 1
2
, θj+ 1

2
) = (1, 1), then

(ΛM− 1
2 ,Ij

,ΛM+ 1
2 ,Ij

) = (
ΓMj

λFj− 1
2
− λFj+ 1

2
+ ε

,
ΓMj

λFj− 1
2
− λFj+ 1

2
+ ε

).

2. Similarly assume

θj− 1
2
∈ [0,Λm− 1

2 ,Ij
], θj+ 1

2
∈ [0,Λm+ 1

2 ,Ij
],

where Λm− 1
2 ,Ij

and Λm
+ 1

2 ,Ij
are designed to preserve the lower bound by

equation (25).

(a) If Fj− 1
2
≥ 0 and Fj+ 1

2
≤ 0,

(Λm− 1
2 ,Ij

,Λm+ 1
2 ,Ij

) = (1, 1).

(b) If Fj− 1
2
≥ 0 and Fj+ 1

2
> 0,

(Λm− 1
2 ,Ij

,Λm+ 1
2 ,Ij

) = (1,min(1,
Γmj

−λFj+ 1
2
− ε

)).

(c) If Fj− 1
2
< 0 and Fj+ 1

2
≤ 0,

(Λm− 1
2 ,Ij

,Λm+ 1
2 ,Ij

) = (min(1,
Γmj

λFj− 1
2
− ε

), 1).
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(d) If Fj− 1
2
< 0 and Fj+ 1

2
> 0,

• If equation (25) is satisfied with (θj− 1
2
, θj+ 1

2
) = (1, 1), then

(Λm− 1
2 ,Ij

,Λm+ 1
2 ,Ij

) = (1, 1).

• If equation (25) is not satisfied with (θj− 1
2
, θj+ 1

2
) = (1, 1), then

(Λm− 1
2 ,Ij

,Λm+ 1
2 ,Ij

) = (
Γmj

λFj− 1
2
− λFj+ 1

2
− ε

,
Γmj

λFj− 1
2
− λFj+ 1

2
− ε

).

The parameter ε can be chosen slightly greater than machine error to avoid

division by 0. Notice that the range of θj+ 1
2

(23) is determined by the need

to ensure both the upper bound (24) and the lower bound (25) of numerical

solutions in both cell Ij and its neighboring cells. Thus the locally defined

limiting parameter is given as

θj+ 1
2

= min(Λ+ 1
2 ,Ij

,Λ− 1
2 ,Ij+1

), (26)

with Λ+ 1
2 ,Ij

= min(ΛM
+ 1

2 ,Ij
,Λm

+ 1
2 ,Ij

), Λ− 1
2 ,Ij+1

= min(ΛM− 1
2 ,Ij+1

,Λm− 1
2 ,Ij+1

). The

modified flux in equation (21) with the θj+ 1
2

designed above ensures the maxi-

mum principle. Such modified flux is consistent since it is a convex combination

(θj+ 1
2
∈ [0, 1]) of a high order flux Ĥj+ 1

2
with the first order flux ĥj+ 1

2
. The

modified scheme (21) is still in the conservative form.

4. Concluding remarks

We have reviewed two approaches for enforcing bound-preserving property

in high order schemes. While the approach in Section 2 is simple and effective,

it works most well for finite volume and DG schemes solving conservation laws.

For finite difference schemes, this approach can also apply to, e.g. compress-

ible Euler equations to maintain positivity Zhang and Shu (2012b), but it has

restrictions in order to keep the original high order accuracy. For convection-

diffusion equations, this approach works for general DG methods to second order

accuracy on unstructured triangular meshes Zhang et al. (2013), and to third
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order accuracy for a special class of DG methods (the direct DG method) Liu

and Yu (2014); Yan (2015); Chen et al. (2016).

The second approach in Section 3 can also be applied to finite volume and

DG schemes for conservation laws, but their real advantage is for finite difference

schemes solving conservation laws and schemes for solving convection-diffusion

equations, for which the first approach has rather severe restrictions as men-

tioned above.

For spectral methods, see Liu et al. (2016) for a globally defined sweeping

limiter to enforce bound-preserving property.
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