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FAST FACTORIZATION UPDATE FOR GENERAL ELLIPTIC
EQUATIONS UNDER MULTIPLE COEFFICIENT UPDATES

XIAO LIU*, JIANLIN XIAf AND MAARTEN V. DE HOOP?

Abstract. For discretized elliptic equations, we develop a new factorization update algorithm
that is suitable for incorporating coefficient updates with large support and large magnitude in
subdomains. When a large number of local updates are involved, in addition to the standard factors in
various (interior) subdomains, we precompute some factors in the corresponding exterior subdomains.
Exterior boundary maps are constructed hierarchically. The data dependencies among tree-based
interior and exterior factors are exploited to enable extensive information reuse. For coefficient
updates in a subdomain, only the interior problem in that subdomain needs to be re-factorized and
there is no need to propagate updates to other tree nodes. The combination of the new interior factors
with a chain of existing factors quickly provides the new global factor and thus an effective solution
algorithm. The introduction of exterior factors avoids updating higher-level subdomains with large
system sizes, and makes the idea suitable for handling multiple occurrences of updates. The method
can also accommodate the case when the support of updates moves.

Key words. elliptic equations, coefficient update, fast factorization update, exterior boundary
map, exterior factor, Schur complement domain decomposition
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1. Introduction. In the solution of elliptic partial differential equations (PDEs)
in practical fields such as inverse problems and computational biology, it often needs to
update the coefficients associated with subdomains. For example, one key application
in inverse problems is the iterative reconstruction of the wavespeed governed by the
Helmholtz equation, which needs to incorporate modified coefficients into the following
reference problem:

(1.1) Lu=finD, L=-V-py(z)V+pi(z) V+po(),

where D is the domain of interest, po(x), p1(z), and pa(z) are coefficient functions
of the partial differential operator L. After discretizations with continuous Galerkin
or finite difference approaches, we get a system of linear equations with a sparse
coefficient matrix.

1.1. Coefficient update problem. Given the reference problem (1.1), the co-
efficient update problem is written as

(1.2) Li=fin D, L=-V-py(z)V+pi(z) V+po(z),

where po(x), p1(z), and p2(x) are the modified coefficients and 4 is the new solution.
The modification is localized if the coefficient update (L — L) has small support.
Assuming that we know the reference solution w of (1.1), then (1.2) is equivalent to

(1.3) L(i—u)=f—Lu= (L - L)u.
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Note that the right-hand side of (1.3) has the same local support as the coefficient
update.

There are several strategies for solving either (1.2) or (1.3). For iterative solution,
one can either reuse the preconditioner for L or perform additional changes for better
convergence. For direct solution, if there is only a small amount of local updates, then
the Sherman-Morrison-Woodbury (SMW) formula may be used. However, if there is a
sequence of many local updates, then a factorization update from L to L is preferred.
The primary focus of this paper is to develop a fast factorization update algorithm in
direct solution. Our algorithm has nearly optimal complexity for the update of the
factorization, and is effective for handling modifications (L — L) supported at various
different locations.

Note that (1.2) can also be formulated as integral equations. Applying the solution
operator G of (1.1) to both sides of (1.2), we get

(1.4) (I+G(L—L)i=u.

Restricting to the support of (I~/ — L), we get the Lippmann-Schwinger integral equa-
tion. For direct solutions, (1.4) is not suitable since dense factorization in subdomains
can be expensive. Boundary integral formulations may be more suitable because of
the reduced system size, and are in fact related to our approach.

1.2. Existing work. Sparse direct solvers provide robust solutions to the fixed
reference problem (1.1). After nested dissection reordering [10], the factorization of
an n x n sparse discretized matrix generally costs O(n*/?) in 2D, and O(n?) in 3D.
Recent software packages provide the option of solving sparse right-hand sides, for
example MUMPS [24, 27] and PARDISO [28, 25]. A similar factorization process can
be derived from Schur-complement domain decomposition strategies [5, 13, 16, 22, 26].

In the recent years, rank-structured representations are developed to effectively
compress fill-in and obtain fast factorizations of elliptic problems. Several such rep-
resentations are H matrices [14], H? matrices[15], and hierarchically semiseparable
(HSS) matrices [3, 33]. Sparse factorization with HSS operations is proposed in
[12, 30, 31, 32].

Updating LU factorizations of general matrices has been studied in [2, 4, 7, 11].
For sparse factorizations, these methods propagate updates from child nodes to an-
cestors in elimination trees. For integral operators, updates to local geometries and
kernels are studied in [8, 23, 34]. In [8], the update of the structures and the values
of hierarchical matrices under adaptive refinement is discussed. In [23], the changes
are propagated bottom-up in a quadtree. The SMW formula is used in [34] to com-
pute the action of the inverse. For all of these methods, the updates are typically
restricted to a few entries or low-rank updates. If the updates have large support or
move locations, these methods may become inefficient.

For updating the coefficients in the PDE problem (1.2), the amount of modifica-
tions can be large due to the volumetric change in the support of (i — L). For such
a situation, it is beneficial to decompose the problem into a modified interior prob-
lem and a fixed exterior problem. This idea traces back to [18, 19], where boundary
integral equations are formulated for piecewise constant media. For inhomogeneous
reference problems, related formulations are developed in [17, 29], where the funda-
mental solution is replaced by the inverse matrix of some finite difference stencil.
In order to efficiently precompute selected parts of the inverse, the location of the
updates usually needs to be fixed.
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FAST FACTORIZATION UPDATE FOR ELLIPTIC EQUATIONS 3

1.3. Overview of the proposed method. In this work, we design a fast fac-
torization update algorithm that is suitable for handling multiple volumetric updates.
The method has a precomputation step that factorizes the reference problem in various
interior and exterior subdomains. When the problem changes, re-factorizations are
done only for those subdomains containing the changes, and the solution is updated
by solving (1.3) using the locality of the right-hand side.

The method starts from a domain partitioning governed by a binary tree (de-
noted by 7T), similarly to related direct solvers. In the factorization of the reference
problem, interior boundary value problems for adjacent subdomains are combined by
eliminating their shared interface. The work flow is bottom-up in 7. That is, child
nodes pass data to parents.

For solving coefficient update problems with a relatively large amount of up-
dates, we precompute additional factors following a top-down traversal of T before
knowing the specific region or value of perturbations. This top-down process con-
structs factors for exterior boundary value problems, which helps to bypass existing
data dependencies. Then for the solution of (1.3), we only re-factorize the smallest
subdomain containing the updates, and select existing factors of exterior problems
which remain unchanged. For each subtree 7 C 7T corresponding to the updates, the
solution update algorithm treats the nodes inside and outside T separately. Inside
T, the solution algorithm is similar to the traditional one, but requires the factors
of the updated system. Outside T, a boundary value problem is solved using the
factorization of the exterior problems.

The advantages of our method include:

e For the factorization update, the use of tree-based interior and exterior factors
enables us to change only the factors inside the region of coefficient updates,
namely, only the nodes in T. There is no propagation of updates to other
nodes. Thus, the factorization update cost only depends on the size of the
updates instead of the total number of unknowns.

e The method is suitable for incorporating coefficient updates with large support
and large magnitude in subdomains.

e Because the precomputation prepares for coefficient updates in any subtree
of T, the supports of updates are allowed to move.

e Regarding the discretized Green’s function, the explicit precomputation and
storage of relevant dense matrices are replaced by fast and flexible matrix-
vector products. The matrix-vector products support local applications inside
certain subdomains.

The method is tested on the transmission problem for the Helmholtz equation.
The precomputation has the same scaling as related direct factorizations. The method
is especially suitable for large number of changes (e.g. 10° nodals), because the re-
factorization cost is independent of the total number of unknowns.

The remaining sections are organized as follows. We formulate the interior and
exterior problems in Section 2. Hierarchical factorization algorithms are developed in
Section 3 for the coefficient update problems. The algorithm complexity is estimated
in Section 4 and is supported by the performance tests in Section 5. Some conclusions
are drawn in Section 6.

2. Interior and exterior problems and basic solution update methods.
Factorization update problems can be complicated in general because there are many
different scenarios regarding the locations and sizes of the updates. We first present
our method for the simplest case and then generalize it to more advanced forms. In
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4 XIAO LIU, JIANLIN XIA, AND MAARTEN V. DE HOOP

Section 2.1, updates in fixed locations are solved by a one-level relation between an
interior and an exterior problem. In Section 2.2, a two-level method gives additional
flexibility to change the locations and sizes of the updates.

The problem of changing the coefficient in the interior of a subdomain is originally
formulated and solved using potential theories, see for example [19, Theorem 4.1].
Note that the fundamental solution (free-space Green’s function) is challenging to
compute or to store in inhomogeneous media. We choose instead a Schur-complement
domain decomposition formulation, which focuses on solving sub-problems on the
boundaries of subdomains.

For a certain subdomain Q2 C D, we start by introducing unknowns on the bound-
ary 02 and in the interior §2. Consider an auxiliary local PDE problem

Lu® = §©) in Q,

2.1
1) au® + Bv - (ngu(Q)) = g(ﬂ) on 01,

where L is defined in (1.1) with leading-order coefficient function po(z), f? is the
interior source, g is the boundary source, v is the outward unit normal vector with
respect to 99, and «a, 3 are two scalar coefficients. The solution u(®) generates the
boundary data §¢? on 9Q defined as

(2.2) 3 = au™ 4+ fu . (ngu(Q)) on 012,

where &,B are scalar coefficients such that §(? is not a scalar multiple of ¢(2).

Next, we introduce solution operators of the local problem (2.1), and they involve
the boundary-boundary, interior-boundary, boundary-interior, and interior-interior
interactions for the subdomain Q. For given f(9) and ¢(¥); the solution of (2.1) is
expressed as

(2.3) u® = GO @) 4 g () (@)

where G(?) is the interior solution operator, the kernel of which is the Green’s function,
and K is the solution operator of the corresponding boundary value problem. §(?)
also has a linear relation with f¢? and ¢(?

(2.4) 5O = (D @) 4 g p(@),

where T is the boundary map between the boundary source ¢(» and the boundary
data §%, and SV is the linear map from the interior source f( to G(».

After discretizations, (2.3)—(2.4) become matrix-vector multiplications that can
be combined as

G TO SO\ /g
(2.5) (u(9)> = (K(Q) G(Q)) (f(m) )
The size of T(?) is usually smaller than the other blocks (S(?), K and G%),
because 0f2 is one dimension lower than Q. In Section 2.1, we show how (2.5) is
used to solve the coefficient update problem. Starting from Section 2.2, we improve
the efficiency by considering the factorizations inside Q and avoiding forming large

matrices explicitly. For the rest of the paper, we use linear algebra notation for ease
of exposition.
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FAST FACTORIZATION UPDATE FOR ELLIPTIC EQUATIONS 5

2.1. One-level method and interior and exterior problems. We show the
basic idea of solving the coefficient update problem (1.3) by combining the information
of interior and exterior subdomains. For coefficient updates supported in 2, (2.5) is
insufficient because ¢ is unknown. To get the unknowns on 92, we need to consider
the exterior subdomain Q° := D\, which is the relative complement of 2’s closure in
D. There is one level of domain partitioning, where 2 and Q¢ are level-one subdomains
of D.

Similar to (2.5), for the exterior subdomain ¢, we have

- gy (1) S (o
: () K@) q@) )\ p@) )
which contains the solution operators to the problem (2.1) with Q replaced by €Q°.

Choosing a special case of Robin-to-Robin map such that o # 0 in (2.1) and (&, B) =
(a, —B) in (2.2), then the transmission condition on 0f is

(27) g =g, G = @),

because the outward normal changes sign across 0. By eliminating () and §(©")
n (2.5)—(2.6), we get

7€) -7 S© 0 s 0

1@ g g@ | [ g0 0
(2.8) kKO 0 o® o PN Bl I

0 K@ o ge)) \peo (99
Let

@  _r
o) _ (T

(2.9) MO — ( L, T(QC)) .

The solution operator in D is the Schur complement of M (P in (2.8) as follows:

b (GO K o1 (SO
(2.10) Gt >_< aon) ) — ey | (1) g )

The coefficient update problem (1.3) can be solved by computing matrix-vector prod-
ucts of G(P) using (2.10). The boundary map matrices need to be formed explicitly
in order to factorize M(?Y) but the remaining ones can be implicit as long as matrix-
vector products can be performed.

Based on the current formulation, we propose an algorithm for directly solving the
simplest coefficient update problem in which the region of modifications €2 is known.
The factorization operations related to the reference operator L include:

1. Factorize L in © so that the matrix-vector product (2.5) can be computed by
direct solutions.
2. Factorize L in Q° similarly for (2.6).
3. Factorize M (9% in (2.9).
Then for each new problem La= f, the solution process is:
1. Solve Lu = f by multiplying (2.10) with f.
2. Update the factors of L to get those of L in .
3. Solve L(& — u) = (L — L)u by multiplying (2.10) with (L — L)u.
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6 XIAO LIU, JIANLIN XIA, AND MAARTEN V. DE HOOP

If Q is much smaller than D, the method is very effective because the factorization
in  is much cheaper than that in D. The last step of solution does not involve
G S because the right-hand side is supported in .

REMARK 2.1. Before describing more sophisticated generalizations, we show that
this method can already be beneficial for coefficient updates in disjoint locations. If the
problem can be modified in at most J subdomains denoted by {2, : j =1,2,...,J}
with disjoint closure, then we choose 2 = J; ; as their union. The solution update
method can be described as:

1. Factorize L in Q°, and L in each Q;.
2. Compute % —u by multiplying (2.10) with (L — L)u. Note that each operator
for 2 is decoupled, for example,

7€) — diag(T(Ql), T(Q2), o 7T(QJ))7

where diag() is used to denote a block diagonal matrix.
Because of the decoupled forms, the method is essentially still a one-level method and
the level-one subdomains are Q1,$s,...,Q;, and Q°.

2.2. Two-level method. If a level-one subdomain €2 is partitioned further into
two non-overlapping subdomains €21, Qs, and coefficient updates may be restricted to
one of the subdomains, then based on (2.10), there are three equivalent representations
of the solution kernel:

G K@) . S(©)
(D) _ _ (092)\—1
() K@) o1 (SO
= ( G(Qi)) - ( K(Qi)> (MO ( S(fm)

(92) F(©2) sy 1 (S
< G(Qé))( K(ﬂ;)) (M%) < 5(ﬂ;>>-

One can observe that these three representations select the interior subdomain as €2,
4, and €2, respectively. Here, we discuss the procedure to generate all the components
in (2.11), and how to solve the problem by fast matrix-vector products of (2.11).
The direct method is based on the inherent dependencies among different sub-
domains. The set of subdomains has a partial order governed by the subset relation
“C”. The graph in Figure 2.1 visualizes the partial order, each edge of which starts
from a subset and points to a superset. Three tree structures can be extracted from
the graph in Figure 2.1, which are illustrated separately in Figure 2.2. According to
the support of coefficient modifications, one of the tree structure can be selected to
solve the problem:
- For modifications in €2, the interior subdomain is 2 which contains €2; and
o, and the exterior subdomain is 2°;
- For modifications in €21, the interior subdomain is 21, and the exterior sub-
domain is €2 which contains €5 and Q¢
- For modifications in 5, the interior subdomain is €25, and the exterior sub-
domain is 2§ which contains 2; and €°.
For Q, Qf, and €5, each one contains two subdomains. Here, it is important to
effectively combine the results from smaller subdomains.

This manuscript is for review purposes only.
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)’
Qu@

Fic. 2.1. Graph structures of the two-level method in Section 2.2. The solid, dashed, and dotted
edges give the three trees in Figure 2.2. The geometric relations are illustrated by the example of
partitioning a disk into sectors.

D
o, 0, Q Qe o) Qe

F1G. 2.2. Tree structures extracted from Figure 2.1. The three trees have the same set of leaves:
Q1,Q2,Q°.

We construct each component of (2.11) by factorizing the related interior and
exterior problems. The three cases in (2.11) share a similar relation, but the for-
mulas become more sophisticated because now €21, 5, and Q¢ have different shared
boundaries. We define them as

Tp =00 N, T1=00 N3N, Ty=0 NN

Similar to the derivation from (2.7) to (2.8), solution operators for { can be
obtained from merging Q1 and 5. The same transmission condition (2.7) is imposed
on I'y, and we get

YR S | B S () 0
Sy oow o s (] [
Q Q Q A

B I T R 1 P
0 T o T 0 s || g " |
K:(fgl) 0 K:(flzl) 0 G(Q) 0 f(ZI) uig;;
0 K(SZ) 0 K:(gz) 0 G(Qz) f( 2) U

B

where g,(cﬂ"")

denotes the restriction of ¢(®m) on T, Tég’") denotes the restriction
of T(%m) on T'y x Ty, the colon in the subscript means taking no restriction in the
corresponding column or row set, and the other notation can be similarly understood.
The first four block rows are rewritten from (2.4), and the transmission condition is
substituted in the first two block rows. The last two block rows are from (2.3). The

coupling between subdomains lies in the leading 2 x 2 block

T(Ql) s
T'og) _
(2.13) MTo) = < O_I T(Q2)>
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8 XIAO LIU, JIANLIN XIA, AND MAARTEN V. DE HOOP

The Schur complement of M) in (2.12) contains solution operators (2.5) for ©,
where

(Q1) (21) (1)
(214) T(Q) = Tl’l (Q2) | — Tl’o (Q2) (M(FO))_l TO,l (Q2) |
T2 T50 Ty,
S(Ql) T(Ql) S(Ql)
2.15) SO = "1 _(*10 AfTon—1 [ 0. ,
K(Ql) K(Ql) T(Ql)
2.16) K®) = 5l — 50 M@To—1 [ 401 :
( ) K:(ygz) K:(’ng) ( ) To(gz)

G K Y
2.17) G = ( ) B M(To)y=1 [ 20, .
( ) G(2) K:(,%b) ( ) S(()izz)

Again, we do not form S K and G explicitly because they can be much larger
than the boundary map 7. (2.15)-(2.17) can be used to compute fast matrix-vector
products instead.

For the exterior subdomain Qf, we merge Qs and Q¢ with similar procedures.
Using the transmission condition (2.7) on I's, we have

. T(QQ) T(Q2) T(QQ)
(2.18) T = ( 0.0 Qc > — < 0,2 Qc (JW(FZ))_1 20 Q) | >
7 ) )

)

. K(Q2) K(Qz) T(Qz)
(2.19) K@) = ( H0 Qo | — e Qe (M(Fz))_l 20 Q) | >
K:(,l ) K:(,Q ) T2(71 )

where
Q

(2.20) M(Fg) — (TQ(,QQ) ?QIC)> .
-1 T272

Clearly, we can also merge ©; and Q¢ by exchanging the role of Q7 and 2 in (2.18)—
(2.20).

Finally, for computing the solution, we develop tree-based algorithms built upon
the leaf subdomains €y, Q2, and Q° by substituting (2.13)—(2.20) into (2.11). For
example, if the coefficient updates and the right-hand sides are supported in 21,
based on the second case of (2.11) the solution process is as follows.

1. Factorize the updated operator L in ; for forming 7(®1) and for computing
matrix-vector products of 5’(01), f((ﬂl), and G,
2. Solve the coupling system for 9§y using the second case of (2.11):

T(Ql) I g(Ql) fS’(Ql)f(Ql)
7 T ) \g@D) ) = 0 ‘

3. Compute the solution in €y using (2.3):
w) — é(ﬂl)f(ﬂl) + K(Ql)g(ﬂl)'

4. Solve the coupling system for I's:

Q Qo) (QF
o (82 - ().
7)) _T2,1 91"
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5. Compute the solution in Qo and Q°:

(@) = K (g6 + K57 g5,
U(Q ) = K:(,l )gg ) + K:(,Z )gé )

In steps 4 and 5, K1 g% is computed using (2.19). This two-level process illus-
trates the capability of dealing with coefficient updates of different volumes. The
results of this section provide key components of the general hierarchical algorithms
in Section 3.

3. General hierarchical algorithms. In this section, we write the complete
hierarchical algorithms for solving coefficient update problems. In particular, we fo-
cus on generalizing the two-level method in Section 2.2 to a constructive multi-level
method. The multi-level method involves the tree-based domain partitioning. Com-
paring with simpler alternatives in Section 2, the multi-level method is more flexible
because it supports updates in any subdomain used in the domain partitioning, and
is more efficient because the computational cost is minimized by isolating the smallest
subdomains containing the coefficient updates. Besides a factorization update in sub-
domains, the major steps include: introduction of exterior subdomains in the domain
partitioning, factorization of interior and exterior problems, and solution update with
localized right-hand sides.

3.1. Transformation of binary domain partitioning. First, we describe the
structures of the domain partitioning when exterior subdomains are introduced. The
computational domain D is partitioned hierarchically following a tree denoted by 7.
For notational simplicity, we restrict the discussion to binary trees. If ¢ is the parent
node of ¢; and ¢y in the tree 7, then the open subdomain 2; C D is partitioned into
two open subdomains (2., and ., such that

(3.1) e, NQe, =0, Qi =0, UQ,,.

According to Figure 2.1, for the interior problems, each parent ¢ depends on the
children ¢; and cy; for the exterior domains, )¢, can be partitioned into 2§ and (Q.,,
and Qf can be partitioned into Qf and €., . The partitioning of exterior subdomains
is well defined in the sense of (3.1) because of the following lemma.

LEMMA 3.1. If Q;, Q.,, and Q., are open subdomains of D satisfying (3.1), then
(3.2) QNQ, =0, Q5 =070,

where Q5 represents D\ Q; for each j € {i,c1,c2}.
Proof. Q; D Q,, from (3.1), so

QeN 0., = (D\TH) N0, € (D\ D) N0, = 0.
The open sets £, and ., have empty intersection, so
Qe NQ, =0, Q, CD\Qe, =05 .
QEUQ, C Q¢ because QF C QF and Q., C QS . Q. C QFUQ,, because

¢, =D\ 0, € D\ (% \ Q) € (D\ @)U, =5 UL, 0

This manuscript is for review purposes only.
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Fia. 3.1. Transformation between trees of subdomains. Left panel: the original tree T with the
associated subdomains; Right panel: the new tree for localized solution in ;.

Suppose the problem is modified in 2, for a level-l node p. Write the path from
the root ig to p as ig = 41 — -+ = 9 = p, 50 4y D Qy; O -+ D Qy, = Q. Therefore,
modifications in €2, not only lead to changes in the subtree generated by p, but also
propagate along the path to the root. The goal here is to reorganize the domain
partitioning such that p is a child of the root, then changes in €2, do not propagate to
multiple larger subdomains. Denote ;s sibling by ji for 1 < k <. See the left panel
of Figure 3.1 for the illustration of iz, j, in 7. Denote i; the new node associated
with the exterior subdomain
(3.3) Q-

ik

= Q¢

[

1< k<l

We construct the new binary domain partitioning step by step:
1. For the root node ig, let i;, 4; be its children. From (3.3), one can check that

QN5 =0, Q,=9,0095.

We preserve the partitioning in 2;,, and continue with the new node .

2. For the node 4 with k € {I,1 —1,...,3}, let jg, tx—1 be ;s children. Since
irx—1 is the parent of ik, ji in T, we have from (3.2)—(3.3) that

Q. NQ, =0, 9 =0 UQ,;,

which means the partitioning from ik 0 Tk i5—1 is well defined. We preserve
the partitioning in §2;, and continue with the new node éx_1.

3. For the node iy, let j1, jo be its children. From (3.2) and noticing that
2, = Qf , we have

Q;,NQy, =0, QT@Z: Q;, UQ,,.

The partitioning in ;, or €, is preserved.
The new binary tree is visualized in the right panel of Figure 3.1. The new tree can
be constructed in O(l) operations, because [ — 1 nodes are removed and [ — 1 nodes
are introduced. From the construction process, we see that the new elements {%k} are
not leaf nodes. That is to say, every exterior subdomain introduced here is a union
of existing interior subdomains. The key results are summarized into the following
theorem.

This manuscript is for review purposes only.



FAST FACTORIZATION UPDATE FOR ELLIPTIC EQUATIONS 11

THEOREM 3.2. Given a binary tree T, let {Q; : ¢ € T} be a binary domain
partitioning satisfying (3.1). For a non-root level-l node p € T, there exists a well-
defined binary domain partitioning such that

1. Q, is a child subdomain of D,

2. the elements of {Q; : i is an ancestor of p in T,1 < level(i) < I} are re-
moved,

3. the elements of {25 : i is an ancestor of p in T,1 < level(i) <1} are inserted,

4. every new element cannot be a leaf in the new binary partitioning.

The new domain partitioning is used to isolate the perturbations in €2, because
the level-one subdomains are precisely €2, and €27. Then, according to the solution
operator (2.10), the interior problem in €2, needs to be re-factorized, but the exterior
problem in Qf remains the same.

3.2. Hierarchical factorization and solution update. Inspired by the two-
level example in Section 2.2, we describe the family of hierarchical algorithms needed
for solving coefficient update problems, including the factorization and solution of
interior and exterior problems. The major novelties are the hierarchical algorithms of
exterior problems.

The factorization of interior problems follows a bottom-up (postordered) traversal
of the tree 7. If the node i is a leaf, we factorize the discretized PDE (2.1) in €; to
obtain the matrices defined in (2.3)—(2.4). If i has children, then the boundary map
T®%) can be constructed from those at its children using (2.14). The construction
of interior boundary maps has been developed in [13, 21]. Since the process is the
foundation of exterior problems and factorization update, we review this result in
Algorithm 3.1, FACINT, using the notation in this paper.

The construction of exterior boundary maps follows a top-down (reverse pos-
tordered) traversal of 7. The major difference from computing interior boundary
maps is that the data dependency is reversed. For the node ¢ with children ¢y, co, we
have ., , 2, C §; for the interior problems, but Qf ,QF D Qf for the exterior ones.
Based on (2.18), we construct T %) from T T(e) and construct T%2) from
T 7 ) This process is described in Algorithm 3.2, FACEXT.

For the coefficient update problem (1.3), recall that the coefficient update and the
right-hand side are supported in the same subdomain €, for some p € 7. According to
the solution process at the end of Section 2.2, the major steps include: re-factorization
in Q,,, computing boundary sources on the boundary 912, and extracting the solution
inside and outside €,. This is Algorithm 3.4, SOLINT-SOLEXT.

In SOLINT, the modified operator L in Q,, is factorized and the solution in 2, is
computed via (2.3). It is essentially a local version of the solution algorithm presented
in [21]. The matrix-vector products governed by (2.15)—(2.17) are carefully combined
based on the superposition principle. Inside €2,, each subdomain is visited twice by a
postordered and a reverse postordered traversal.

SOLEXT extends the solution to the exterior subdomain €27 by solving a boundary

value problem using K (%) ¢(%) It has a top-down traversal of the new domain
partitioning inside € defined in Theorem 3.2. For the matrix-vector product of

K%)(2.19) replaces (2.16) if there are exterior subdomains involved. At each step,
we get the solution of a subdomain along the path from p to the root of 7, and the
cost increases for high-level problems. The algorithm can be terminated in the middle
once the desired part of the solution is computed.

In general, it does not need to know which subdomain is going to be changed
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in FACEXT, and its output can handle coefficient updates in any subdomain of the
domain partitioning. If we have additional information about p, the cost and storage
can be further reduced by only calculating the exterior factors related to p. As can
be seen in Theorem 3.2 and SOLEXT, the related nodes correspond to the ancestors
of p. Table 3.1 lists the roles and properties of the routines.

TABLE 3.1
Magor properties of the hierarchical factorization and solution algorithms.

Name Description Type of traversal Equation
FACINT |Factorize interior problems Postorder (2.14)
FACEXT |Factorize exterior problems Reverse postorder (2.18)

SOLINT | Solve interior problems | Postorder, reverse postorder |(2.15)—(2.17)
SOLEXT| Solve exterior problems |Reverse postorder of new tree|  (2.19)

Algorithm 3.1 Factorization of interior problems (review of the result in [21])

1: procedure FACINT(T, L)

2 for each ¢ € T following the postordered traversal do

3: if 7 is a leaf then

4: Factorize L in Q; for (%) §(2%) in (2.4) and K*) G in (2.3)
5 else

6 (c1,¢2) < 4’s children

7 Ty anl N 8962, 'y anl NoQY;, Iy + 8962 N oK,

p(Qer) I o
8: Factorize M (o) = | 70,0 () where T k’") = T(Q"”)|F].er
7 TO 062 s
9: Based on (2.14), compute T(%) via
(el 7o) (To)y—1 Ty
’ @) | 7| () | (M) ’ ()
Ty, Ty T2
10: end if
11: end for

12: return 7(%) | factors of M%) and for leaf nodes i, S K@) G
13: end procedure

In summary, we suggest the following calling sequence for solving coefficient up-
date problems:

1. SOLINT(T,40, L, f,...) for factorizing L and solving Lu = f, where i is the
root of T;

2. FACEXT(T,...) for factorizing exterior problems;

3. SOLINT(T, p, L, (L — f/)u, ...) for the solution update @ — u in Q, and the
exterior boundary source g(Q;);

4. SOLEXT(T,p, g %) .) for the solution update @ — u in 7.

Note that the solution steps (1, 3, and 4) can be trivially extended for solving mul-
tiple right-hand sides. Before giving the complexity estimates in Section 4, there are
several qualitative arguments about the cost effectiveness of this family of algorithms.
The factorization of exterior problems does not increase the order of factorization
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Algorithm 3.2 Factorization of exterior problems

1: procedure FACEXT(T,T())

2 for each ¢ € T following a reverse postordered traversal do

3: if i is not a leaf then

4 (c1,¢2) < 4’s children

5 Ty anl N 8962, 'y anl NoQY;, I'y + 8962 N oK,

7
6: Factorize M(3) = | ~4.J @ |17 € {1,2}
- T
7: Based on (2.18), compute 7%1) via
(Qc,) (Qcy) (Qc,)
(T()’O 2 (QC)) - (TOQ 2 (QC)> (MT2))=1 (TM 2 (QC))
Ty Ty Ty,
8: Compute T%2) via
(Qey) (Qcy) (Rey)
(Tw 1 (QC)> - (TOJ 1 (QC)> (M Tyt (Tw 1 (QC)>
Ty I,y Ty
9: end if
10: end for
11: return 7 and factors of M®*)

12: end procedure

complexity, because the cost depends on the sizes of boundaries {9€);} in the same
way as existing factorization of interior problems. The cost of the re-factorization step
is low because it only depends on the local problem size in €,. The cost of solution
is low if terminated early because Algorithm 3.4 visits smaller subdomains first.

4. Algorithmic complexity. In this section, we estimate the complexity of the
algorithms presented in Section 3. The major components of our method includes:
a precomputation step that constructs interior and exterior boundary maps of the
reference problem, a factorization update step that modifies the factors of an interior
problem, and a solution update step to get the final solution.

The complexity of the solution algorithms relies on the quality of the domain par-
titioning. For an n x n discretized linear system from a d-dimensional elliptic problem
(d =2 or 3). The following assumption is used to obtain an optimal complexity.

AssuMPTION 4.1. Let 7 be a complete binary tree containing 1 levels. Each
level-k subdomain of the domain partitioning {€2; : ¢« € T} contains O(ny) interior
unknowns and O(my,) boundary unknowns, where

_ d—1)/d
ny =2 Fn, mk:n,(C )/d,

Furthermore, let nj = O(1). Here, the constants in the big O notation are assumed
to be uniformly bounded.

REMARK 4.1. The condition on ny and my requires that the domain partitioning
is balanced. The fractional power in mj comes from the dimension reduction from a
d-dimensional domain to a (d — 1)-dimensional boundary.
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Algorithm 3.3 Matrix-vector multiplications of S and K in (2.5)

1: procedure SMVINT(T, f, ™), TG) M) > Compute §(%) = §() £(2:)
2 for each ¢ € T following the postordered traversal do

3 if 7 is a leaf then

4 G §() ()

5: else
6:
7
8

(c1,¢2) « @’s children
Ty 6901 N 8962, 'y « GQCI NoQ;, I'y + 8962 N oK,
Based on (2.15), compute

() (2e) (@)

() 9y (T To)y—1 [ 90

g | . Q. (M) <A Qe )
<9é 2)> ( T2(,0 2)> 9(() 2)

9: end if
10: end for
11: return §*)

12: end procedure

1: procedure KMVINT (T, g, K&, T¢) M) > Compute K () g(€:)
2 for each ¢ € T following a reverse postordered traversal do

3 if i is a leaf then

4: ulg, + K(Qi)g(Qi)

5: else

6 (c1,¢2) < @’s children

7 Ty « anl n 8962, 'y « 8(261 N GQZ, 'y 3962 N o),

8 Based on (2.16), compute

(ch) (ch) (Qi)
90 (To)y—1 _To,l 91
(g(()%)) — (ME) (_Tmcz) (m))

0,2 92
(Qcq) Q; (Qec,) Q;
9: g e g gy o gf™
10: end if
11: end for
12: return u

13: end procedure

If boundary maps are stored as dense matrices, then according to (2.14) and
(2.18), the precomputation of interior and exterior boundary maps has dense factor-
izations and multiplications at every node. The complexity Cp. and the storage Spyre
are respectively

1 3/2y
O(n*’*) in 2D
Core = 280 (m3) = ’
’ z_: () { O(n?) in 3D,
(4.1) h=0

O(nlogn) in 2D,

1
Spre = Y 20 (m2) =
b kZ:o (mi) { O(n*/3)  in 3D.

The results are in the same orders as those in the direct factorization of sparse matrices
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Algorithm 3.4 Solution update With modiﬁed coefficients in €,

1: procedure SOLINT(7,p, L, f, T ) > Solution in 2,
2: T « subtree(p) > Subtree of T with root p
3 FACINT(T, L) for T(*), 5 K(* LG MO in Q,

4 g™« SMVINT(T, f, S( () M< )) > SE%) £ %) via Algorithm 3.3
5 Based on (2.10), solve

T(Qp) -1 g(Qp) _g(Qp)
-1 7O )\ g = 0
6: for each i € T following a reverse postordered traversal do
> U(Qp) — é(Qp)f(Qp) + R(Qp)g(ﬂp)

7 if i is a leaf then
8: U(Qp)|9i — G p() 4 g() ()
9: else
10: (c1,¢2) < 4’s children
11: Ty anl N 8962, 'y 8961 NoQY;, I'y + 8962 N oY;
12: Based on (2.16)—(2.17), compute
Q. A(ch) ~(Qc ) Q;
(g{)ﬂ 1;) — —(MTo)~t (g(()Q ) JrT(E’é 1)gg )>
c ~ c 2 c Qi
90 gy JrTo,229§ )
QC Q QC Q
13: g g, gl g
14: end if
15: end for
16:  return u(%) ¢(%)

17: end procedure

procedure SOLEXT(T, p, (%), K T M) '
> Solution in Q via K(©5) g(%)

—_

2 C1 <D

3 while ¢; is not the root do

4: cy < c1’s sibling, ¢ < ¢1’s parent

5 Ty anl n anZ, 'y « 8(2,;1 NoQ;, Iy + 8962 N oK,
6 Based on (2.19), compute

(Qey) (Qe3)
92 _(MT2)y-1 15, €g))
ay | & —(M7) < (Q$)> g
<9§ ) T2,1

7 T < subtree(cy)
8: u ) |g, =KMVINT(T, g(%) K T4 A1)
> K (2e2)g(2e2) via Algorithm 3.3
9: clL 41
10: end while
11: return u(%)

12: end procedure
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with nested dissection reordering.

Consider modifying the problem in some level-l subdomain 2, containing O(n;)
interior unknowns. The subtree corresponding to €2, has (1—1) levels. The complexity
Cupa and storage Sypq of local factorization update are respectively

3/2 .
ud—z2k i) = O(nl/) in 2D,
’ - O(n2) in 3D,
Supa = Z 20 (2, O(nylogn;) in 2D,
” O(ni’®)  in 3D.

Observe that Cypq and Sypq only depend on the number of interior unknowns in €,,.

In comparison, we consider the naive factorization update method which changes
the factors following the original data dependencies in 7. In addition to the re-
factorization in €, that has complexity Cypa in (4.2), the naive method has an addi-
tional step which updates every ancestor of p. This additional step costs

=t n3/? in 2D,
Cam=zo<mi>={ oy o
(4.3) h=0 ’
)
)

Zo m? _{ o in 2D,

in 3D.

This additional cost, on the contrary, is primarily determined by n because the ances-
tors of p have larger and larger matrix sizes. The proposed new method reduces the
cost from Cyne + Cupd to Cupd. If Ny < n, then the new method avoided the dominant
cost (4.3) that is comparable to the cost (4.1) for re-factorizing the entire problem.

The solution update in Algorithm 3.4 has the solution in €2, and Qf, and the
computational cost is proportional to the memory access. The solution complexity is
Supd in Qp, and is Spye in Qg. If the exterior solution is terminated early, then the
total cost can be as low as Sypd-

As a summary, the following theorem describes the complexity of the proposed
algorithms.

O(n

/3

THEOREM 4.1. Let the domain partitioning satisfy Assumption 4.1. The cost of
precomputation in Algorithm 3.1 (FACINT) and Algorithm 3.2 (FACEXT ) is governed
by the matriz size via (4.1). The cost of factorization update is (4.2), which only
depends on the size of the updated subdomain.

5. Numerical tests. In this section, we check how the cost of our direct method
scales with respect to the size of the computational domain and the support of the
coefficient update. The method is able to solve general elliptic problems with coeffi-
cient updates. A particular problem of interest is the variable-coefficient Helmholtz
equation

—Au(z) — k*(z)u(z) = f(2),

where k(x) is the wavenumber that may be updated in various applications. The
solution algorithms are implemented in MATLAB, and are run in serial on a Linux
workstation with 3.5GHz CPU and 64GB RAM.

In two dimensional space, we discretize the Helmholtz equation by a continu-
ous Galerkin method with fourth-order nodal bases. The performance of the direct
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method is mostly determined by the matrix size and sparsity pattern. The matrix
size equals the number of nodals in the domain, and high-order schemes usually lead
to more nonzeros. We update the wavenumber in a subdomain close to the center of
the computational domain, and the magnitude of the update is as large as 1/2 of the
original wavenumber.

If we enlarge the computational domain and increase n while fixing the size of
the modified subdomain, the test results are listed in Table 5.1 and plotted in Figure
5.1(a). As estimated by (4.1), the factorizations of the interior problems (Algorithm
3.1) and the exterior problems (Algorithm 3.2) share the same order of complexity.
Direct factorizations contribute to the major computational cost and storage of the
method. Algorithm 3.4 (SOLINT) contains the re-factorization and solution in the
modified subdomain, and the cost does not depend on the matrix n. Algorithm 3.4
(SOLEXT) is the solution in the exterior subdomain, and the cost depends approxi-
mately linearly on n. Such complexity is consistent with our estimate.

For the largest computational domain with n fixed, we also vary the size n; of
the modified subdomain. The results are listed in Table 5.2 and plotted in Figure
5.1(b). The cost of SOLINT is dominated by the direct factorization in the modified
subdomain. The dependence on n; as illustrated in Figure 5.1(b) is a little better
than the estimate in (4.2). The cost of SOLEXT does not increase because n is fixed.

- - - 101t -
1014 | [FO—FACINT+FACEXT —w—SOLINT
===0(n 1'5) (reference) ol =0(n |1'5) (reference) e ‘
—=—SOLINT 10 | | —e—SOLEXT -7
1012 } |——SOLEXT /" .
® = = =0O(n logn) (reference) ®
a 2 .09
o o 10
T 1010 [
e sl 8
108 s 10
6 7
10 10
3212 6412 12812 25612 402 802 160 2 3202
Matrix size n Update size n;
(a) Flops of Table 5.1 (b) Flops of Table 5.2

Fic. 5.1. Scaling plots.

These test results demonstrate that the proposed algorithms are capable of solving
the challenging cases where the coefficient updates have large magnitude and support.
The algorithms can accommodate large amounts of modifications fairly easily. In
addition, the solution update algorithms produce high accuracies as in stand-alone
direct solvers and no approximation is made.

We would also like to mention that, the large magnitude and support of the
updates make the modified problems no longer close to the reference problem. This
situation is handled efficiently with our algorithms, but causes troubles to standard
methods such as iterative solvers using the factorization of the reference problem as a
preconditioner. To verify this, we reuse the factorization of the reference problem as a
preconditioner to solve the four matrices considered in Table 5.2. This preconditioner
quickly losses effectiveness when the modified subdomain increases its size. It takes
32, 180, 717, and 2585 preconditioned GMRES iterations respectively to reach the
relative residual accuracy 107°.
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TABLE 5.1
Test for increasing matriz sizes n with a fized modified subdomain size (n; = 1602). The
updated solution u is compared with a stand-alone direct solution v, and the relative £p-distance is

llu = llp/[lv]lp-

(a) Problem setup

#nodals 3212 6412 12812 25612
Matrix size 103,041 410,881 1,640,961 6,558,721
#non-zeros 2,437,184 | 9,748,736 | 38,994,944 | 155,979,776

(b) Factorization of interior problems
Time 1.77s 7.70s 33.10s 156.30s
Flops 3.11F9 1.58 E10 8.93E10 5.62F11
Factor storage 9.03E6 4.65E7 2.31E8 1.11FE9
(¢) Factorization of exterior problems
Time 0.52s 3.75s 25.02s 170.29s
Flops 1.66 9 1.75E10 1.62F11 1.35F12
Factor storage 3.87TFE6 2.56 E7 1.46 E8 7.66 E'8
(d) Solution of the reference problem
Time 0.08s 0.32s 1.39s 7.08s
Flops 2.52E7 1.11E8 4.83E8 2.10E9
(e) Solution update after modifying 160° nodals
SOLINT time 0.46s 0.56s 0.58s 0.67s
SOLINT flops 7.90E8 1.19E9 1.19E9 1.19E9
SOLEXT time 0.03s 0.14s 0.63s 2.89s
SOLEXT flops 9.34F6 5.21E7 2.47E8 1.18F9

Relative fo-distance || 4.74F — 16 | 5.95E — 16 | 6.88F — 16 | 6.75FE — 16
Relative /o .-distance || 1.20E — 15 | 1.34F — 15 | 9.89F — 16 | 7.81F — 16

TABLE 5.2
Test for a fived matriz size (25612) and increasing modified subdomain sizes.

Modified nodals 40? 802 1602 3202
SOLINT time 0.12s 0.14s 0.47s 1.86s
SOLINT flops 4.73E7 2.16E8 9.94E8 4.85F9
SOLEXT time 2.93s 2.52s 2.50s 2.47s
SOLEXT flops 1.08E9 1.08E9 1.08E9 1.06 E9

Relative /5-distance || 3.76 £ — 16 | 5.06FE — 16 | 6.75F — 16 | 8.02E — 16
Relative ¢ .-distance || 7.31F — 16 | 6.40F — 16 | 7.81F — 16 | 8.78 K — 16

6. Conclusions. We developed a new framework for updating the factorization
of discretized elliptic operators. A major significance is the hierarchical construction
of exterior boundary maps. For each modified operator, we only need to update the
factorization for locations where the coefficients are updated, and the locations of co-
efficient update are allowed to change to different subdomains. Tree-based algorithms
were given for solving the interior and exterior problems. The complexity estimates
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and the scaling test based on the Helmholtz equation show that the cost of factoriza-
tion update only depends on the size of the modified subdomain and that the solution
update cost is much faster than the standard direct solution algorithms. The solution
update algorithms produce high accuracies as in expensive stand-alone direct solvers
The method is suitable for solving the challenging cases where the updates have large
magnitude and support.
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