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Abstract. For discretized elliptic equations, we develop a new factorization update algorithm4
that is suitable for incorporating coefficient updates with large support and large magnitude in5
subdomains. When a large number of local updates are involved, in addition to the standard factors in6
various (interior) subdomains, we precompute some factors in the corresponding exterior subdomains.7
Exterior boundary maps are constructed hierarchically. The data dependencies among tree-based8
interior and exterior factors are exploited to enable extensive information reuse. For coefficient9
updates in a subdomain, only the interior problem in that subdomain needs to be re-factorized and10
there is no need to propagate updates to other tree nodes. The combination of the new interior factors11
with a chain of existing factors quickly provides the new global factor and thus an effective solution12
algorithm. The introduction of exterior factors avoids updating higher-level subdomains with large13
system sizes, and makes the idea suitable for handling multiple occurrences of updates. The method14
can also accommodate the case when the support of updates moves.15
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1. Introduction. In the solution of elliptic partial differential equations (PDEs)19

in practical fields such as inverse problems and computational biology, it often needs to20

update the coefficients associated with subdomains. For example, one key application21

in inverse problems is the iterative reconstruction of the wavespeed governed by the22

Helmholtz equation, which needs to incorporate modified coefficients into the following23

reference problem:24

(1.1) Lu = f in D, L = −∇ · p2(x)∇+ p1(x) · ∇+ p0(x),25

where D is the domain of interest, p0(x), p1(x), and p2(x) are coefficient functions26

of the partial differential operator L. After discretizations with continuous Galerkin27

or finite difference approaches, we get a system of linear equations with a sparse28

coefficient matrix.29

1.1. Coefficient update problem. Given the reference problem (1.1), the co-30

efficient update problem is written as31

(1.2) L̃ũ = f in D, L̃ = −∇ · p̃2(x)∇+ p̃1(x) · ∇+ p̃0(x),32

where p̃0(x), p̃1(x), and p̃2(x) are the modified coefficients and ũ is the new solution.33

The modification is localized if the coefficient update (L̃ − L) has small support.34

Assuming that we know the reference solution u of (1.1), then (1.2) is equivalent to35

(1.3) L̃(ũ− u) = f − L̃u = (L− L̃)u.36
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Note that the right-hand side of (1.3) has the same local support as the coefficient37

update.38

There are several strategies for solving either (1.2) or (1.3). For iterative solution,39

one can either reuse the preconditioner for L or perform additional changes for better40

convergence. For direct solution, if there is only a small amount of local updates, then41

the Sherman-Morrison-Woodbury (SMW) formula may be used. However, if there is a42

sequence of many local updates, then a factorization update from L to L̃ is preferred.43

The primary focus of this paper is to develop a fast factorization update algorithm in44

direct solution. Our algorithm has nearly optimal complexity for the update of the45

factorization, and is effective for handling modifications (L̃−L) supported at various46

different locations.47

Note that (1.2) can also be formulated as integral equations. Applying the solution48

operator G of (1.1) to both sides of (1.2), we get49

(1.4) (I +G(L̃− L))ũ = u.50

Restricting to the support of (L̃−L), we get the Lippmann-Schwinger integral equa-51

tion. For direct solutions, (1.4) is not suitable since dense factorization in subdomains52

can be expensive. Boundary integral formulations may be more suitable because of53

the reduced system size, and are in fact related to our approach.54

1.2. Existing work. Sparse direct solvers provide robust solutions to the fixed55

reference problem (1.1). After nested dissection reordering [10], the factorization of56

an n × n sparse discretized matrix generally costs O(n3/2) in 2D, and O(n2) in 3D.57

Recent software packages provide the option of solving sparse right-hand sides, for58

example MUMPS [24, 27] and PARDISO [28, 25]. A similar factorization process can59

be derived from Schur-complement domain decomposition strategies [5, 13, 16, 22, 26].60

In the recent years, rank-structured representations are developed to effectively61

compress fill-in and obtain fast factorizations of elliptic problems. Several such rep-62

resentations are H matrices [14], H2 matrices[15], and hierarchically semiseparable63

(HSS) matrices [3, 33]. Sparse factorization with HSS operations is proposed in64

[12, 30, 31, 32].65

Updating LU factorizations of general matrices has been studied in [2, 4, 7, 11].66

For sparse factorizations, these methods propagate updates from child nodes to an-67

cestors in elimination trees. For integral operators, updates to local geometries and68

kernels are studied in [8, 23, 34]. In [8], the update of the structures and the values69

of hierarchical matrices under adaptive refinement is discussed. In [23], the changes70

are propagated bottom-up in a quadtree. The SMW formula is used in [34] to com-71

pute the action of the inverse. For all of these methods, the updates are typically72

restricted to a few entries or low-rank updates. If the updates have large support or73

move locations, these methods may become inefficient.74

For updating the coefficients in the PDE problem (1.2), the amount of modifica-75

tions can be large due to the volumetric change in the support of (L̃ − L). For such76

a situation, it is beneficial to decompose the problem into a modified interior prob-77

lem and a fixed exterior problem. This idea traces back to [18, 19], where boundary78

integral equations are formulated for piecewise constant media. For inhomogeneous79

reference problems, related formulations are developed in [17, 29], where the funda-80

mental solution is replaced by the inverse matrix of some finite difference stencil.81

In order to efficiently precompute selected parts of the inverse, the location of the82

updates usually needs to be fixed.83
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1.3. Overview of the proposed method. In this work, we design a fast fac-84

torization update algorithm that is suitable for handling multiple volumetric updates.85

The method has a precomputation step that factorizes the reference problem in various86

interior and exterior subdomains. When the problem changes, re-factorizations are87

done only for those subdomains containing the changes, and the solution is updated88

by solving (1.3) using the locality of the right-hand side.89

The method starts from a domain partitioning governed by a binary tree (de-90

noted by T ), similarly to related direct solvers. In the factorization of the reference91

problem, interior boundary value problems for adjacent subdomains are combined by92

eliminating their shared interface. The work flow is bottom-up in T . That is, child93

nodes pass data to parents.94

For solving coefficient update problems with a relatively large amount of up-95

dates, we precompute additional factors following a top-down traversal of T before96

knowing the specific region or value of perturbations. This top-down process con-97

structs factors for exterior boundary value problems, which helps to bypass existing98

data dependencies. Then for the solution of (1.3), we only re-factorize the smallest99

subdomain containing the updates, and select existing factors of exterior problems100

which remain unchanged. For each subtree T̃ ⊂ T corresponding to the updates, the101

solution update algorithm treats the nodes inside and outside T̃ separately. Inside102

T̃ , the solution algorithm is similar to the traditional one, but requires the factors103

of the updated system. Outside T̃ , a boundary value problem is solved using the104

factorization of the exterior problems.105

The advantages of our method include:106

• For the factorization update, the use of tree-based interior and exterior factors107

enables us to change only the factors inside the region of coefficient updates,108

namely, only the nodes in T̃ . There is no propagation of updates to other109

nodes. Thus, the factorization update cost only depends on the size of the110

updates instead of the total number of unknowns.111

• The method is suitable for incorporating coefficient updates with large support112

and large magnitude in subdomains.113

• Because the precomputation prepares for coefficient updates in any subtree114

of T , the supports of updates are allowed to move.115

• Regarding the discretized Green’s function, the explicit precomputation and116

storage of relevant dense matrices are replaced by fast and flexible matrix-117

vector products. The matrix-vector products support local applications inside118

certain subdomains.119

The method is tested on the transmission problem for the Helmholtz equation.120

The precomputation has the same scaling as related direct factorizations. The method121

is especially suitable for large number of changes (e.g. 105 nodals), because the re-122

factorization cost is independent of the total number of unknowns.123

The remaining sections are organized as follows. We formulate the interior and124

exterior problems in Section 2. Hierarchical factorization algorithms are developed in125

Section 3 for the coefficient update problems. The algorithm complexity is estimated126

in Section 4 and is supported by the performance tests in Section 5. Some conclusions127

are drawn in Section 6.128

2. Interior and exterior problems and basic solution update methods.129

Factorization update problems can be complicated in general because there are many130

different scenarios regarding the locations and sizes of the updates. We first present131

our method for the simplest case and then generalize it to more advanced forms. In132
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Section 2.1, updates in fixed locations are solved by a one-level relation between an133

interior and an exterior problem. In Section 2.2, a two-level method gives additional134

flexibility to change the locations and sizes of the updates.135

The problem of changing the coefficient in the interior of a subdomain is originally136

formulated and solved using potential theories, see for example [19, Theorem 4.1].137

Note that the fundamental solution (free-space Green’s function) is challenging to138

compute or to store in inhomogeneous media. We choose instead a Schur-complement139

domain decomposition formulation, which focuses on solving sub-problems on the140

boundaries of subdomains.141

For a certain subdomain Ω ⊂ D, we start by introducing unknowns on the bound-142

ary ∂Ω and in the interior Ω. Consider an auxiliary local PDE problem143

(2.1)

 Lu(Ω) = f (Ω) in Ω,

αu(Ω) + βν ·
(
p2∇u(Ω)

)
= g(Ω) on ∂Ω,

144

where L is defined in (1.1) with leading-order coefficient function p2(x), f
(Ω) is the145

interior source, g(Ω) is the boundary source, ν is the outward unit normal vector with146

respect to ∂Ω, and α, β are two scalar coefficients. The solution u(Ω) generates the147

boundary data ĝ(Ω) on ∂Ω defined as148

(2.2) ĝ(Ω) = α̂u(Ω) + β̂ν ·
(
p2∇u(Ω)

)
on ∂Ω,149

where α̂, β̂ are scalar coefficients such that ĝ(Ω) is not a scalar multiple of g(Ω).150

Next, we introduce solution operators of the local problem (2.1), and they involve151

the boundary-boundary, interior-boundary, boundary-interior, and interior-interior152

interactions for the subdomain Ω. For given f (Ω) and g(Ω), the solution of (2.1) is153

expressed as154

(2.3) u(Ω) = G(Ω)f (Ω) +K(Ω)g(Ω),155

whereG(Ω) is the interior solution operator, the kernel of which is the Green’s function,156

and K(Ω) is the solution operator of the corresponding boundary value problem. ĝ(Ω)157

also has a linear relation with f (Ω) and g(Ω)158

(2.4) ĝ(Ω) = T (Ω)g(Ω) + S(Ω)f (Ω),159

where T (Ω) is the boundary map between the boundary source g(Ω) and the boundary160

data ĝ(Ω), and S(Ω) is the linear map from the interior source f (Ω) to ĝ(Ω).161

After discretizations, (2.3)–(2.4) become matrix-vector multiplications that can162

be combined as163

(2.5)

(
ĝ(Ω)

u(Ω)

)
=

(
T (Ω) S(Ω)

K(Ω) G(Ω)

)(
g(Ω)

f (Ω)

)
.164

The size of T (Ω) is usually smaller than the other blocks (S(Ω), K(Ω), and G(Ω)),165

because ∂Ω is one dimension lower than Ω. In Section 2.1, we show how (2.5) is166

used to solve the coefficient update problem. Starting from Section 2.2, we improve167

the efficiency by considering the factorizations inside Ω and avoiding forming large168

matrices explicitly. For the rest of the paper, we use linear algebra notation for ease169

of exposition.170
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2.1. One-level method and interior and exterior problems. We show the171

basic idea of solving the coefficient update problem (1.3) by combining the information172

of interior and exterior subdomains. For coefficient updates supported in Ω, (2.5) is173

insufficient because g(Ω) is unknown. To get the unknowns on ∂Ω, we need to consider174

the exterior subdomain Ωc := D\Ω, which is the relative complement of Ω’s closure in175

D. There is one level of domain partitioning, where Ω and Ωc are level-one subdomains176

of D.177

Similar to (2.5), for the exterior subdomain Ωc, we have178

(2.6)

(
ĝ(Ω

c)

u(Ωc)

)
=

(
T (Ωc) S(Ωc)

K(Ωc) G(Ωc)

)(
g(Ω

c)

f (Ωc)

)
,179

which contains the solution operators to the problem (2.1) with Ω replaced by Ωc.180

Choosing a special case of Robin-to-Robin map such that αβ ̸= 0 in (2.1) and (α̂, β̂) =181

(α,−β) in (2.2), then the transmission condition on ∂Ω is182

(2.7) g(Ω) = ĝ(Ω
c), ĝ(Ω) = g(Ω

c),183

because the outward normal changes sign across ∂Ω. By eliminating ĝ(Ω) and ĝ(Ω
c)184

in (2.5)–(2.6), we get185

(2.8)


T (Ω) −I S(Ω) 0
−I T (Ωc) 0 S(Ωc)

K(Ω) 0 G(Ω) 0
0 K(Ωc) 0 G(Ωc)




g(Ω)

g(Ω
c)

f (Ω)

f (Ωc)

 =


0
0

u(Ω)

u(Ωc)

 .186

Let187

(2.9) M (∂Ω) =

(
T (Ω) −I
−I T (Ωc)

)
.188

The solution operator in D is the Schur complement of M (∂Ω) in (2.8) as follows:189

(2.10) G(D) =

(
G(Ω)

G(Ωc)

)
−
(
K(Ω)

K(Ωc)

)
(M (∂Ω))−1

(
S(Ω)

S(Ωc)

)
.190

The coefficient update problem (1.3) can be solved by computing matrix-vector prod-191

ucts of G(D) using (2.10). The boundary map matrices need to be formed explicitly192

in order to factorize M (∂Ω), but the remaining ones can be implicit as long as matrix-193

vector products can be performed.194

Based on the current formulation, we propose an algorithm for directly solving the195

simplest coefficient update problem in which the region of modifications Ω is known.196

The factorization operations related to the reference operator L include:197

1. Factorize L in Ω so that the matrix-vector product (2.5) can be computed by198

direct solutions.199

2. Factorize L in Ωc similarly for (2.6).200

3. Factorize M (∂Ω) in (2.9).201

Then for each new problem L̃ũ = f , the solution process is:202

1. Solve Lu = f by multiplying (2.10) with f .203

2. Update the factors of L to get those of L̃ in Ω.204

3. Solve L̃(ũ− u) = (L− L̃)u by multiplying (2.10) with (L− L̃)u.205

This manuscript is for review purposes only.



6 XIAO LIU, JIANLIN XIA, AND MAARTEN V. DE HOOP

If Ω is much smaller than D, the method is very effective because the factorization206

in Ω is much cheaper than that in D. The last step of solution does not involve207

G(Ωc), S(Ωc) because the right-hand side is supported in Ω.208

Remark 2.1. Before describing more sophisticated generalizations, we show that209

this method can already be beneficial for coefficient updates in disjoint locations. If the210

problem can be modified in at most J subdomains denoted by {Ωj : j = 1, 2, . . . , J}211

with disjoint closure, then we choose Ω =
∪

j Ωj as their union. The solution update212

method can be described as:213

1. Factorize L in Ωc, and L̃ in each Ωj .214

2. Compute ũ−u by multiplying (2.10) with (L− L̃)u. Note that each operator215

for Ω is decoupled, for example,216

T (Ω) = diag(T (Ω1), T (Ω2), . . . , T (ΩJ )),217

where diag() is used to denote a block diagonal matrix.218

Because of the decoupled forms, the method is essentially still a one-level method and219

the level-one subdomains are Ω1,Ω2, . . . ,ΩJ , and Ωc.220

2.2. Two-level method. If a level-one subdomain Ω is partitioned further into221

two non-overlapping subdomains Ω1,Ω2, and coefficient updates may be restricted to222

one of the subdomains, then based on (2.10), there are three equivalent representations223

of the solution kernel:224

G(D) =

(
G(Ω)

G(Ωc)

)
−
(
K(Ω)

K(Ωc)

)
(M (∂Ω))−1

(
S(Ω)

S(Ωc)

)
(2.11)225

=

(
G(Ω1)

G(Ωc
1)

)
−
(
K(Ω1)

K(Ωc
1)

)
(M (∂Ω1))−1

(
S(Ω1)

S(Ωc
1)

)
226

=

(
G(Ω2)

G(Ωc
2)

)
−
(
K(Ω2)

K(Ωc
2)

)
(M (∂Ω2))−1

(
S(Ω2)

S(Ωc
2)

)
.227

228

One can observe that these three representations select the interior subdomain as Ω,229

Ω1, and Ω2 respectively. Here, we discuss the procedure to generate all the components230

in (2.11), and how to solve the problem by fast matrix-vector products of (2.11).231

The direct method is based on the inherent dependencies among different sub-232

domains. The set of subdomains has a partial order governed by the subset relation233

“⊆”. The graph in Figure 2.1 visualizes the partial order, each edge of which starts234

from a subset and points to a superset. Three tree structures can be extracted from235

the graph in Figure 2.1, which are illustrated separately in Figure 2.2. According to236

the support of coefficient modifications, one of the tree structure can be selected to237

solve the problem:238

- For modifications in Ω, the interior subdomain is Ω which contains Ω1 and239

Ω2, and the exterior subdomain is Ωc;240

- For modifications in Ω1, the interior subdomain is Ω1, and the exterior sub-241

domain is Ωc
1 which contains Ω2 and Ωc;242

- For modifications in Ω2, the interior subdomain is Ω2, and the exterior sub-243

domain is Ωc
2 which contains Ω1 and Ωc.244

For Ω, Ωc
1, and Ωc

2, each one contains two subdomains. Here, it is important to245

effectively combine the results from smaller subdomains.246
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Fig. 2.1. Graph structures of the two-level method in Section 2.2. The solid, dashed, and dotted
edges give the three trees in Figure 2.2. The geometric relations are illustrated by the example of
partitioning a disk into sectors.
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Fig. 2.2. Tree structures extracted from Figure 2.1. The three trees have the same set of leaves:
Ω1,Ω2,Ωc.

We construct each component of (2.11) by factorizing the related interior and247

exterior problems. The three cases in (2.11) share a similar relation, but the for-248

mulas become more sophisticated because now Ω1, Ω2, and Ωc have different shared249

boundaries. We define them as250

Γ0 = ∂Ω1 ∩ ∂Ω2, Γ1 = ∂Ω1 ∩ ∂Ω, Γ2 = ∂Ω2 ∩ ∂Ω.251

Similar to the derivation from (2.7) to (2.8), solution operators for Ω can be252

obtained from merging Ω1 and Ω2. The same transmission condition (2.7) is imposed253

on Γ0, and we get254

(2.12)



T
(Ω1)
0,0 −I T

(Ω1)
0,1 0 S

(Ω1)
0,: 0

−I T
(Ω2)
0,0 0 T

(Ω2)
0,2 0 S

(Ω2)
0,:

T
(Ω1)
1,0 0 T

(Ω1)
1,1 0 S

(Ω1)
1,: 0

0 T
(Ω2)
2,0 0 T

(Ω2)
2,2 0 S

(Ω2)
2,:

K
(Ω1)
:,0 0 K

(Ω1)
:,1 0 G(Ω1) 0

0 K
(Ω2)
:,0 0 K

(Ω2)
:,2 0 G(Ω2)





g
(Ω1)
0

g
(Ω2)
0

g
(Ω1)
1

g
(Ω2)
2

f (Ω1)

f (Ω2)


=



0
0

ĝ
(Ω1)
1

ĝ
(Ω2)
2

u(Ω1)

u(Ω2)


,255

where g
(Ωm)
k denotes the restriction of g(Ωm) on Γk, T

(Ωm)
0,1 denotes the restriction256

of T (Ωm) on Γ0 × Γ1, the colon in the subscript means taking no restriction in the257

corresponding column or row set, and the other notation can be similarly understood.258

The first four block rows are rewritten from (2.4), and the transmission condition is259

substituted in the first two block rows. The last two block rows are from (2.3). The260

coupling between subdomains lies in the leading 2× 2 block261

(2.13) M (Γ0) =

(
T

(Ω1)
0,0 −I
−I T

(Ω2)
0,0

)
.262
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The Schur complement of M (Γ0) in (2.12) contains solution operators (2.5) for Ω,263

where264

T (Ω) =

(
T

(Ω1)
1,1

T
(Ω2)
2,2

)
−

(
T

(Ω1)
1,0

T
(Ω2)
2,0

)
(M (Γ0))−1

(
T

(Ω1)
0,1

T
(Ω2)
0,2

)
,(2.14)265

S(Ω) =

(
S
(Ω1)
1,:

S
(Ω2)
2,:

)
−

(
T

(Ω1)
1,0

T
(Ω2)
2,0

)
(M (Γ0))−1

(
S
(Ω1)
0,:

S
(Ω2)
0,:

)
,(2.15)266

K(Ω) =

(
K

(Ω1)
:,1

K
(Ω2)
:,2

)
−

(
K

(Ω1)
:,0

K
(Ω2)
:,0

)
(M (Γ0))−1

(
T

(Ω1)
0,1

T
(Ω2)
0,2

)
,(2.16)267

G(Ω) =

(
G(Ω1)

G(Ω2)

)
−

(
K

(Ω1)
:,0

K
(Ω2)
:,0

)
(M (Γ0))−1

(
S
(Ω1)
0,:

S
(Ω2)
0,:

)
.(2.17)268

269

Again, we do not form S(Ω), K(Ω), andG(Ω) explicitly because they can be much larger270

than the boundary map T (Ω). (2.15)–(2.17) can be used to compute fast matrix-vector271

products instead.272

For the exterior subdomain Ωc
1, we merge Ω2 and Ωc with similar procedures.273

Using the transmission condition (2.7) on Γ2, we have274

T (Ωc
1) =

(
T

(Ω2)
0,0

T
(Ωc)
1,1

)
−

(
T

(Ω2)
0,2

T
(Ωc)
1,2

)
(M (Γ2))−1

(
T

(Ω2)
2,0

T
(Ωc)
2,1

)
,(2.18)275

K(Ωc
1) =

(
K

(Ω2)
:,0

K
(Ωc)
:,1

)
−

(
K

(Ω2)
:,2

K
(Ωc)
:,2

)
(M (Γ2))−1

(
T

(Ω2)
2,0

T
(Ωc)
2,1

)
,(2.19)276

277

where278

(2.20) M (Γ2) =

(
T

(Ω2)
2,2 −I
−I T

(Ωc)
2,2

)
.279

Clearly, we can also merge Ω1 and Ωc by exchanging the role of Ω1 and Ω2 in (2.18)–280

(2.20).281

Finally, for computing the solution, we develop tree-based algorithms built upon282

the leaf subdomains Ω1, Ω2, and Ωc by substituting (2.13)–(2.20) into (2.11). For283

example, if the coefficient updates and the right-hand sides are supported in Ω1,284

based on the second case of (2.11) the solution process is as follows.285

1. Factorize the updated operator L̃ in Ω1 for forming T̃ (Ω1) and for computing286

matrix-vector products of S̃(Ω1), K̃(Ω1), and G̃(Ω1).287

2. Solve the coupling system for ∂Ω1 using the second case of (2.11):288 (
T̃ (Ω1) −I
−I T (Ωc

1)

)(
g(Ω1)

g(Ω
c
1)

)
=

(
−S̃(Ω1)f (Ω1)

0

)
.289

3. Compute the solution in Ω1 using (2.3):290

u(Ω1) = G̃(Ω1)f (Ω1) + K̃(Ω1)g(Ω1).291

4. Solve the coupling system for Γ2:292

M (Γ2)

(
g
(Ω2)
2

g
(Ωc)
2

)
=

(
−T (Ω2)

2,0 g
(Ωc

1)
0

−T (Ωc)
2,1 g

(Ωc
1)

1

)
.293
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5. Compute the solution in Ω2 and Ωc:294

u(Ω2) = K
(Ω2)
:,0 g

(Ωc
1)

0 +K
(Ω2)
:,2 g

(Ω2)
2 ,

u(Ωc) = K
(Ωc)
:,1 g

(Ωc
1)

1 +K
(Ωc)
:,2 g

(Ωc)
2 .

295

In steps 4 and 5, K(Ωc
1)g(Ω

c
1) is computed using (2.19). This two-level process illus-296

trates the capability of dealing with coefficient updates of different volumes. The297

results of this section provide key components of the general hierarchical algorithms298

in Section 3.299

3. General hierarchical algorithms. In this section, we write the complete300

hierarchical algorithms for solving coefficient update problems. In particular, we fo-301

cus on generalizing the two-level method in Section 2.2 to a constructive multi-level302

method. The multi-level method involves the tree-based domain partitioning. Com-303

paring with simpler alternatives in Section 2, the multi-level method is more flexible304

because it supports updates in any subdomain used in the domain partitioning, and305

is more efficient because the computational cost is minimized by isolating the smallest306

subdomains containing the coefficient updates. Besides a factorization update in sub-307

domains, the major steps include: introduction of exterior subdomains in the domain308

partitioning, factorization of interior and exterior problems, and solution update with309

localized right-hand sides.310

3.1. Transformation of binary domain partitioning. First, we describe the311

structures of the domain partitioning when exterior subdomains are introduced. The312

computational domain D is partitioned hierarchically following a tree denoted by T .313

For notational simplicity, we restrict the discussion to binary trees. If i is the parent314

node of c1 and c2 in the tree T , then the open subdomain Ωi ⊂ D is partitioned into315

two open subdomains Ωc1 and Ωc2 such that316

(3.1) Ωc1 ∩ Ωc2 = ∅, Ωi = Ωc1 ∪ Ωc2 .317

According to Figure 2.1, for the interior problems, each parent i depends on the318

children c1 and c2; for the exterior domains, Ωc
c1 can be partitioned into Ωc

i and Ωc2 ,319

and Ωc
c2 can be partitioned into Ωc

i and Ωc1 . The partitioning of exterior subdomains320

is well defined in the sense of (3.1) because of the following lemma.321

Lemma 3.1. If Ωi, Ωc1 , and Ωc2 are open subdomains of D satisfying (3.1), then322

(3.2) Ωc
i ∩ Ωc2 = ∅, Ωc

c1 = Ωc
i ∪ Ωc2 ,323

where Ωc
j represents D \ Ωj for each j ∈ {i, c1, c2}.324

Proof. Ωi ⊃ Ωc2 from (3.1), so325

Ωc
i ∩ Ωc2 = (D \ Ωi) ∩ Ωc2 ⊂ (D \ Ωc2) ∩ Ωc2 = ∅.326

The open sets Ωc1 and Ωc2 have empty intersection, so327

Ωc1 ∩ Ωc2 = ∅, Ωc2 ⊂ D \ Ωc1 = Ωc
c1 .328

Ωc
i ∪ Ωc2 ⊂ Ωc

c1 because Ωc
i ⊂ Ωc

c1 and Ωc2 ⊂ Ωc
c1 . Ω

c
c1 ⊂ Ωc

i ∪ Ωc2 because329

Ωc
c1 = D \ Ωc1 ⊂ D \ (Ωi \ Ωc2) ⊂ (D \ Ωi) ∪ Ωc2 = Ωc

i ∪ Ωc2 .330
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Fig. 3.1. Transformation between trees of subdomains. Left panel: the original tree T with the
associated subdomains; Right panel: the new tree for localized solution in Ωil .

Suppose the problem is modified in Ωp for a level-l node p. Write the path from331

the root i0 to p as i0 → i1 → · · · → il = p, so Ωi0 ⊃ Ωi1 ⊃ · · · ⊃ Ωil = Ωp. Therefore,332

modifications in Ωp not only lead to changes in the subtree generated by p, but also333

propagate along the path to the root. The goal here is to reorganize the domain334

partitioning such that p is a child of the root, then changes in Ωp do not propagate to335

multiple larger subdomains. Denote ik’s sibling by jk for 1 ≤ k ≤ l. See the left panel336

of Figure 3.1 for the illustration of ik, jk in T . Denote îk the new node associated337

with the exterior subdomain338

(3.3) Ωîk
= Ωc

ik
, 1 < k ≤ l.339

We construct the new binary domain partitioning step by step:340

1. For the root node i0, let il, îl be its children. From (3.3), one can check that341

Ωil ∩ Ωc
il
= ∅, Ωi0 = Ωil ∪ Ωc

il
.342

We preserve the partitioning in Ωil , and continue with the new node îl.343

2. For the node îk with k ∈ {l, l − 1, . . . , 3}, let jk, îk−1 be îk’s children. Since344

ik−1 is the parent of ik, jk in T , we have from (3.2)–(3.3) that345

Ωc
ik−1
∩ Ωjk = ∅, Ωc

ik
= Ωc

ik−1
∪ Ωjk ,346

which means the partitioning from îk to jk, îk−1 is well defined. We preserve347

the partitioning in Ωjk and continue with the new node îk−1.348

3. For the node î2, let j1, j2 be its children. From (3.2) and noticing that349

Ωj1 = Ωc
i1
, we have350

Ωj1 ∩ Ωj2 = ∅, Ωc
i2

= Ωj1 ∪ Ωj2 .351

The partitioning in Ωj1 or Ωj2 is preserved.352

The new binary tree is visualized in the right panel of Figure 3.1. The new tree can353

be constructed in O(l) operations, because l − 1 nodes are removed and l − 1 nodes354

are introduced. From the construction process, we see that the new elements {̂ik} are355

not leaf nodes. That is to say, every exterior subdomain introduced here is a union356

of existing interior subdomains. The key results are summarized into the following357

theorem.358
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Theorem 3.2. Given a binary tree T , let {Ωi : i ∈ T } be a binary domain359

partitioning satisfying (3.1). For a non-root level-l node p ∈ T , there exists a well-360

defined binary domain partitioning such that361

1. Ωp is a child subdomain of D,362

2. the elements of {Ωi : i is an ancestor of p in T , 1 ≤ level(i) < l} are re-363

moved,364

3. the elements of {Ωc
i : i is an ancestor of p in T , 1 < level(i) ≤ l} are inserted,365

4. every new element cannot be a leaf in the new binary partitioning.366

The new domain partitioning is used to isolate the perturbations in Ωp, because367

the level-one subdomains are precisely Ωp and Ωc
p. Then, according to the solution368

operator (2.10), the interior problem in Ωp needs to be re-factorized, but the exterior369

problem in Ωc
p remains the same.370

3.2. Hierarchical factorization and solution update. Inspired by the two-371

level example in Section 2.2, we describe the family of hierarchical algorithms needed372

for solving coefficient update problems, including the factorization and solution of373

interior and exterior problems. The major novelties are the hierarchical algorithms of374

exterior problems.375

The factorization of interior problems follows a bottom-up (postordered) traversal376

of the tree T . If the node i is a leaf, we factorize the discretized PDE (2.1) in Ωi to377

obtain the matrices defined in (2.3)–(2.4). If i has children, then the boundary map378

T (Ωi) can be constructed from those at its children using (2.14). The construction379

of interior boundary maps has been developed in [13, 21]. Since the process is the380

foundation of exterior problems and factorization update, we review this result in381

Algorithm 3.1, FACINT, using the notation in this paper.382

The construction of exterior boundary maps follows a top-down (reverse pos-383

tordered) traversal of T . The major difference from computing interior boundary384

maps is that the data dependency is reversed. For the node i with children c1, c2, we385

have Ωc1 ,Ωc2 ⊂ Ωi for the interior problems, but Ωc
c1 ,Ω

c
c2 ⊃ Ωc

i for the exterior ones.386

Based on (2.18), we construct T (Ωc
c1

) from T (Ωc
i ), T (Ωc2 ) and construct T (Ωc

c2
) from387

T (Ωc
i ), T (Ωc1 ). This process is described in Algorithm 3.2, FACEXT.388

For the coefficient update problem (1.3), recall that the coefficient update and the389

right-hand side are supported in the same subdomain Ωp for some p ∈ T . According to390

the solution process at the end of Section 2.2, the major steps include: re-factorization391

in Ωp, computing boundary sources on the boundary ∂Ωp, and extracting the solution392

inside and outside Ωp. This is Algorithm 3.4, SOLINT–SOLEXT.393

In SOLINT, the modified operator L̃ in Ωp is factorized and the solution in Ωp is394

computed via (2.3). It is essentially a local version of the solution algorithm presented395

in [21]. The matrix-vector products governed by (2.15)–(2.17) are carefully combined396

based on the superposition principle. Inside Ωp, each subdomain is visited twice by a397

postordered and a reverse postordered traversal.398

SOLEXT extends the solution to the exterior subdomain Ωc
p by solving a boundary399

value problem using K(Ωc
p)g(Ω

c
p). It has a top-down traversal of the new domain400

partitioning inside Ωc
p defined in Theorem 3.2. For the matrix-vector product of401

K(Ωc
p), (2.19) replaces (2.16) if there are exterior subdomains involved. At each step,402

we get the solution of a subdomain along the path from p to the root of T , and the403

cost increases for high-level problems. The algorithm can be terminated in the middle404

once the desired part of the solution is computed.405

In general, it does not need to know which subdomain is going to be changed406
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in FACEXT, and its output can handle coefficient updates in any subdomain of the407

domain partitioning. If we have additional information about p, the cost and storage408

can be further reduced by only calculating the exterior factors related to p. As can409

be seen in Theorem 3.2 and SOLEXT, the related nodes correspond to the ancestors410

of p. Table 3.1 lists the roles and properties of the routines.411

Table 3.1
Major properties of the hierarchical factorization and solution algorithms.

Name Description Type of traversal Equation

FACINT Factorize interior problems Postorder (2.14)

FACEXT Factorize exterior problems Reverse postorder (2.18)

SOLINT Solve interior problems Postorder, reverse postorder (2.15)–(2.17)

SOLEXT Solve exterior problems Reverse postorder of new tree (2.19)

Algorithm 3.1 Factorization of interior problems (review of the result in [21])

1: procedure FACINT(T , L)
2: for each i ∈ T following the postordered traversal do
3: if i is a leaf then
4: Factorize L in Ωi for T

(Ωi), S(Ωi) in (2.4) and K(Ωi), G(Ωi) in (2.3)
5: else
6: (c1, c2)← i’s children
7: Γ0 ← ∂Ωc1 ∩ ∂Ωc2 , Γ1 ← ∂Ωc1 ∩ ∂Ωi, Γ2 ← ∂Ωc2 ∩ ∂Ωi

8: Factorize M (Γ0) =

(
T

(Ωc1
)

0,0 −I
−I T

(Ωc2 )
0,0

)
where T

(Ωm)
j,k := T (Ωm)|Γj×Γk

9: Based on (2.14), compute T (Ωi) via(
T

(Ωc1
)

1,1

T
(Ωc2 )
2,2

)
−

(
T

(Ωc1
)

1,0

T
(Ωc2 )
2,0

)
(M (Γ0))−1

(
T

(Ωc1
)

0,1

T
(Ωc2 )
0,2

)

10: end if
11: end for
12: return T (Ωi), factors of M (Ωi), and for leaf nodes i, S(Ωi),K(Ωi), G(Ωi)

13: end procedure

In summary, we suggest the following calling sequence for solving coefficient up-412

date problems:413

1. SOLINT(T , i0, L, f, . . . ) for factorizing L and solving Lu = f , where i0 is the414

root of T ;415

2. FACEXT(T , . . . ) for factorizing exterior problems;416

3. SOLINT(T , p, L̃, (L − L̃)u, . . . ) for the solution update ũ − u in Ωp and the417

exterior boundary source g(Ω
c
p);418

4. SOLEXT(T , p, g(Ω
c
p), . . . ) for the solution update ũ− u in Ωc

p.419

Note that the solution steps (1, 3, and 4) can be trivially extended for solving mul-420

tiple right-hand sides. Before giving the complexity estimates in Section 4, there are421

several qualitative arguments about the cost effectiveness of this family of algorithms.422

The factorization of exterior problems does not increase the order of factorization423
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Algorithm 3.2 Factorization of exterior problems

1: procedure FACEXT(T , T (∗))
2: for each i ∈ T following a reverse postordered traversal do
3: if i is not a leaf then
4: (c1, c2)← i’s children
5: Γ0 ← ∂Ωc1 ∩ ∂Ωc2 , Γ1 ← ∂Ωc1 ∩ ∂Ωi, Γ2 ← ∂Ωc2 ∩ ∂Ωi

6: Factorize M (Γj) =

(
T

(Ωcj
)

j,j −I
−I T

(Ωc
i )

j,j

)
, j ∈ {1, 2}

7: Based on (2.18), compute T (Ωc
c1

) via(
T

(Ωc2 )
0,0

T
(Ωc

i )
1,1

)
−

(
T

(Ωc2 )
0,2

T
(Ωc

i )
1,2

)
(M (Γ2))−1

(
T

(Ωc2 )
2,0

T
(Ωc

i )
2,1

)

8: Compute T (Ωc
c2

) via(
T

(Ωc1 )
0,0

T
(Ωc

i )
2,2

)
−

(
T

(Ωc1 )
0,1

T
(Ωc

i )
2,1

)
(M (Γ1))−1

(
T

(Ωc1 )
1,0

T
(Ωc

i )
1,2

)

9: end if
10: end for
11: return T (∗) and factors of M (∗)

12: end procedure

complexity, because the cost depends on the sizes of boundaries {∂Ωi} in the same424

way as existing factorization of interior problems. The cost of the re-factorization step425

is low because it only depends on the local problem size in Ωp. The cost of solution426

is low if terminated early because Algorithm 3.4 visits smaller subdomains first.427

4. Algorithmic complexity. In this section, we estimate the complexity of the428

algorithms presented in Section 3. The major components of our method includes:429

a precomputation step that constructs interior and exterior boundary maps of the430

reference problem, a factorization update step that modifies the factors of an interior431

problem, and a solution update step to get the final solution.432

The complexity of the solution algorithms relies on the quality of the domain par-433

titioning. For an n×n discretized linear system from a d-dimensional elliptic problem434

(d = 2 or 3). The following assumption is used to obtain an optimal complexity.435

Assumption 4.1. Let T be a complete binary tree containing l levels. Each436

level-k subdomain of the domain partitioning {Ωi : i ∈ T } contains O(nk) interior437

unknowns and O(mk) boundary unknowns, where438

nk = 2−kn, mk = n
(d−1)/d
k .439

Furthermore, let nl = O(1). Here, the constants in the big O notation are assumed440

to be uniformly bounded.441

Remark 4.1. The condition on nk and mk requires that the domain partitioning442

is balanced. The fractional power in mk comes from the dimension reduction from a443

d-dimensional domain to a (d− 1)-dimensional boundary.444
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Algorithm 3.3 Matrix-vector multiplications of S(Ω) and K(Ω) in (2.5)

1: procedure SMVINT(T , f, S(∗), T (∗),M (∗)) ◃ Compute ĝ(Ωi) = S(Ωi)f (Ωi)

2: for each i ∈ T following the postordered traversal do
3: if i is a leaf then
4: ĝ(Ωi) ← S(Ωi)f (Ωi)

5: else
6: (c1, c2)← i’s children
7: Γ0 ← ∂Ωc1 ∩ ∂Ωc2 , Γ1 ← ∂Ωc1 ∩ ∂Ωi, Γ2 ← ∂Ωc2 ∩ ∂Ωi

8: Based on (2.15), compute

ĝ(Ωi) ←

(
ĝ
(Ωc1

)
1

ĝ
(Ωc2

)
2

)
−

(
T

(Ωc1 )
1,0

T
(Ωc2

)
2,0

)
(M (Γ0))−1

(
ĝ
(Ωc1

)
0

ĝ
(Ωc2

)
0

)

9: end if
10: end for
11: return ĝ(∗)

12: end procedure

1: procedure KMVINT(T , g,K(∗), T (∗),M (∗)) ◃ Compute K(Ωi)g(Ωi)

2: for each i ∈ T following a reverse postordered traversal do
3: if i is a leaf then
4: u|Ωi

← K(Ωi)g(Ωi)

5: else
6: (c1, c2)← i’s children
7: Γ0 ← ∂Ωc1 ∩ ∂Ωc2 , Γ1 ← ∂Ωc1 ∩ ∂Ωi, Γ2 ← ∂Ωc2 ∩ ∂Ωi

8: Based on (2.16), compute(
g
(Ωc1 )
0

g
(Ωc2

)
0

)
← (M (Γ0))−1

(
−T (Ωc1 )

0,1 g
(Ωi)
1

−T (Ωc2
)

0,2 g
(Ωi)
2

)

9: g
(Ωc1

)
1 ← g

(Ωi)
1 , g

(Ωc2
)

2 ← g
(Ωi)
2

10: end if
11: end for
12: return u
13: end procedure

If boundary maps are stored as dense matrices, then according to (2.14) and445

(2.18), the precomputation of interior and exterior boundary maps has dense factor-446

izations and multiplications at every node. The complexity Cpre and the storage Spre447

are respectively448

Cpre =
l∑

k=0

2kO
(
m3

k

)
=

{
O(n3/2) in 2D,

O(n2) in 3D,

Spre =
l∑

k=0

2kO
(
m2

k

)
=

{
O(n log n) in 2D,

O(n4/3) in 3D.

(4.1)449

The results are in the same orders as those in the direct factorization of sparse matrices450
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Algorithm 3.4 Solution update with modified coefficients in Ωp

1: procedure SOLINT(T , p, L̃, f, T (Ωc
p)) ◃ Solution in Ωp

2: T̃ ← subtree(p) ◃ Subtree of T with root p
3: FACINT(T̃ , L̃) for T̃ (∗), S̃(∗), K̃(∗), G̃(∗), M̃ (∗) in Ωp

4: ĝ(∗) ← SMVINT(T̃ , f, S̃(∗), T̃ (∗), M̃ (∗)) ◃ S̃(Ωp)f (Ωp) via Algorithm 3.3
5: Based on (2.10), solve(

T̃ (Ωp) −I
−I T (Ωc

p)

)(
g(Ωp)

g(Ω
c
p)

)
=

(
−ĝ(Ωp)

0

)
6: for each i ∈ T̃ following a reverse postordered traversal do

◃ u(Ωp) = G̃(Ωp)f (Ωp) + K̃(Ωp)g(Ωp)

7: if i is a leaf then
8: u(Ωp)|Ωi ← G̃(Ωi)f (Ωi) + K̃(Ωi)g(Ωi)

9: else
10: (c1, c2)← i’s children
11: Γ0 ← ∂Ωc1 ∩ ∂Ωc2 , Γ1 ← ∂Ωc1 ∩ ∂Ωi, Γ2 ← ∂Ωc2 ∩ ∂Ωi

12: Based on (2.16)–(2.17), compute(
g
(Ωc1

)
0

g
(Ωc2

)
0

)
← −(M̃ (Γ0))−1

(
ĝ
(Ωc1

)
0 + T̃

(Ωc1
)

0,1 g
(Ωi)
1

ĝ
(Ωc2

)
0 + T̃

(Ωc2
)

0,2 g
(Ωi)
2

)

13: g
(Ωc1 )
1 ← g

(Ωi)
1 , g

(Ωc2 )
2 ← g

(Ωi)
2

14: end if
15: end for
16: return u(Ωp), g(Ω

c
p)

17: end procedure

1: procedure SOLEXT(T , p, g(Ω
c
p),K(∗), T (∗),M (∗))

◃ Solution in Ωc
p via K(Ωc

p)g(Ω
c
p)

2: c1 ← p
3: while c1 is not the root do
4: c2 ← c1’s sibling, i← c1’s parent
5: Γ0 ← ∂Ωc1 ∩ ∂Ωc2 , Γ1 ← ∂Ωc1 ∩ ∂Ωi, Γ2 ← ∂Ωc2 ∩ ∂Ωi

6: Based on (2.19), compute(
g
(Ωc2

)
2

g
(Ωc

i )
2

)
← −(M (Γ2))−1

(
T

(Ωc2
)

2,0

T
(Ωc

i )
2,1

)
g(Ω

c
c1

)

7: T̃ ← subtree(c2)
8: u(Ωc

p)|Ωc2
=KMVINT(T̃ , g(Ωc2 ),K(∗), T (∗),M (∗))

◃ K(Ωc2 )g(Ωc2 ) via Algorithm 3.3
9: c1 ← i

10: end while
11: return u(Ωc

p)

12: end procedure

This manuscript is for review purposes only.



16 XIAO LIU, JIANLIN XIA, AND MAARTEN V. DE HOOP

with nested dissection reordering.451

Consider modifying the problem in some level-l subdomain Ωp containing O(nl)452

interior unknowns. The subtree corresponding to Ωp has (l−l) levels. The complexity453

Cupd and storage Supd of local factorization update are respectively454

Cupd =

l−l∑
k=0

2kO
(
m3

k+l

)
=

{
O(n

3/2
l ) in 2D,

O(n2
l ) in 3D,

Supd =

l−l∑
k=0

2kO
(
m2

k+l

)
=

{
O(nl log nl) in 2D,

O(n
4/3
l ) in 3D.

(4.2)455

Observe that Cupd and Supd only depend on the number of interior unknowns in Ωp.456

In comparison, we consider the naive factorization update method which changes457

the factors following the original data dependencies in T . In addition to the re-458

factorization in Ωp that has complexity Cupd in (4.2), the naive method has an addi-459

tional step which updates every ancestor of p. This additional step costs460

(4.3)

Canc =
l−1∑
k=0

O
(
m3

k

)
=

{
O(n3/2) in 2D,

O(n2) in 3D,

Sanc =
l−1∑
k=0

O
(
m2

k

)
=

{
O(n) in 2D,

O(n4/3) in 3D.

461

This additional cost, on the contrary, is primarily determined by n because the ances-462

tors of p have larger and larger matrix sizes. The proposed new method reduces the463

cost from Canc + Cupd to Cupd. If nl ≪ n, then the new method avoided the dominant464

cost (4.3) that is comparable to the cost (4.1) for re-factorizing the entire problem.465

The solution update in Algorithm 3.4 has the solution in Ωp and Ωc
p, and the466

computational cost is proportional to the memory access. The solution complexity is467

Supd in Ωp, and is Spre in Ωc
p. If the exterior solution is terminated early, then the468

total cost can be as low as Supd.469

As a summary, the following theorem describes the complexity of the proposed470

algorithms.471

Theorem 4.1. Let the domain partitioning satisfy Assumption 4.1. The cost of472

precomputation in Algorithm 3.1 (FACINT) and Algorithm 3.2 (FACEXT) is governed473

by the matrix size via (4.1). The cost of factorization update is (4.2), which only474

depends on the size of the updated subdomain.475

5. Numerical tests. In this section, we check how the cost of our direct method476

scales with respect to the size of the computational domain and the support of the477

coefficient update. The method is able to solve general elliptic problems with coeffi-478

cient updates. A particular problem of interest is the variable-coefficient Helmholtz479

equation480

−∆u(x)− k2(x)u(x) = f(x),481

where k(x) is the wavenumber that may be updated in various applications. The482

solution algorithms are implemented in MATLAB, and are run in serial on a Linux483

workstation with 3.5GHz CPU and 64GB RAM.484

In two dimensional space, we discretize the Helmholtz equation by a continu-485

ous Galerkin method with fourth-order nodal bases. The performance of the direct486
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method is mostly determined by the matrix size and sparsity pattern. The matrix487

size equals the number of nodals in the domain, and high-order schemes usually lead488

to more nonzeros. We update the wavenumber in a subdomain close to the center of489

the computational domain, and the magnitude of the update is as large as 1/2 of the490

original wavenumber.491

If we enlarge the computational domain and increase n while fixing the size of492

the modified subdomain, the test results are listed in Table 5.1 and plotted in Figure493

5.1(a). As estimated by (4.1), the factorizations of the interior problems (Algorithm494

3.1) and the exterior problems (Algorithm 3.2) share the same order of complexity.495

Direct factorizations contribute to the major computational cost and storage of the496

method. Algorithm 3.4 (SOLINT) contains the re-factorization and solution in the497

modified subdomain, and the cost does not depend on the matrix n. Algorithm 3.4498

(SOLEXT) is the solution in the exterior subdomain, and the cost depends approxi-499

mately linearly on n. Such complexity is consistent with our estimate.500

For the largest computational domain with n fixed, we also vary the size nl of501

the modified subdomain. The results are listed in Table 5.2 and plotted in Figure502

5.1(b). The cost of SOLINT is dominated by the direct factorization in the modified503

subdomain. The dependence on nl as illustrated in Figure 5.1(b) is a little better504

than the estimate in (4.2). The cost of SOLEXT does not increase because n is fixed.505

321 2 641 2 1281 2 2561 2

Matrix size n

10 6

10 8

10 10

10 12

10 14

F
lo

ps

FACINT+FACEXT

O(n 1.5 ) (reference)
SOLINT
SOLEXT
O(n logn) (reference)

40 2 80 2 160 2 320 2
10 7

10 8

10 9

10 10

10 11

F
lo

ps

SOLINT

O(n
l
1.5 ) (reference)

SOLEXT

(a) Flops of Table 5.1 (b) Flops of Table 5.2

Fig. 5.1. Scaling plots.

These test results demonstrate that the proposed algorithms are capable of solving506

the challenging cases where the coefficient updates have large magnitude and support.507

The algorithms can accommodate large amounts of modifications fairly easily. In508

addition, the solution update algorithms produce high accuracies as in stand-alone509

direct solvers and no approximation is made.510

We would also like to mention that, the large magnitude and support of the511

updates make the modified problems no longer close to the reference problem. This512

situation is handled efficiently with our algorithms, but causes troubles to standard513

methods such as iterative solvers using the factorization of the reference problem as a514

preconditioner. To verify this, we reuse the factorization of the reference problem as a515

preconditioner to solve the four matrices considered in Table 5.2. This preconditioner516

quickly losses effectiveness when the modified subdomain increases its size. It takes517

32, 180, 717, and 2585 preconditioned GMRES iterations respectively to reach the518

relative residual accuracy 10−5.519
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Table 5.1
Test for increasing matrix sizes n with a fixed modified subdomain size (nl = 1602). The

updated solution u is compared with a stand-alone direct solution v, and the relative ℓp-distance is
∥u− v∥p/∥v∥p.

(a) Problem setup

#nodals 3212 6412 12812 25612

Matrix size 103,041 410,881 1,640,961 6,558,721

#non-zeros 2,437,184 9,748,736 38,994,944 155,979,776

(b) Factorization of interior problems

Time 1.77s 7.70s 33.10s 156.30s

Flops 3.11E9 1.58E10 8.93E10 5.62E11

Factor storage 9.03E6 4.65E7 2.31E8 1.11E9

(c) Factorization of exterior problems

Time 0.52s 3.75s 25.02s 170.29s

Flops 1.66E9 1.75E10 1.62E11 1.35E12

Factor storage 3.87E6 2.56E7 1.46E8 7.66E8

(d) Solution of the reference problem

Time 0.08s 0.32s 1.39s 7.08s

Flops 2.52E7 1.11E8 4.83E8 2.10E9

(e) Solution update after modifying 1602 nodals

SOLINT time 0.46s 0.56s 0.58s 0.67s

SOLINT flops 7.90E8 1.19E9 1.19E9 1.19E9

SOLEXT time 0.03s 0.14s 0.63s 2.89s

SOLEXT flops 9.34E6 5.21E7 2.47E8 1.18E9

Relative ℓ2-distance 4.74E − 16 5.95E − 16 6.88E − 16 6.75E − 16

Relative ℓ∞-distance 1.20E − 15 1.34E − 15 9.89E − 16 7.81E − 16

Table 5.2
Test for a fixed matrix size (25612) and increasing modified subdomain sizes.

Modified nodals 402 802 1602 3202

SOLINT time 0.12s 0.14s 0.47s 1.86s

SOLINT flops 4.73E7 2.16E8 9.94E8 4.85E9

SOLEXT time 2.93s 2.52s 2.50s 2.47s

SOLEXT flops 1.08E9 1.08E9 1.08E9 1.06E9

Relative ℓ2-distance 3.76E − 16 5.06E − 16 6.75E − 16 8.02E − 16

Relative ℓ∞-distance 7.31E − 16 6.40E − 16 7.81E − 16 8.78E − 16

6. Conclusions. We developed a new framework for updating the factorization520

of discretized elliptic operators. A major significance is the hierarchical construction521

of exterior boundary maps. For each modified operator, we only need to update the522

factorization for locations where the coefficients are updated, and the locations of co-523

efficient update are allowed to change to different subdomains. Tree-based algorithms524

were given for solving the interior and exterior problems. The complexity estimates525
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and the scaling test based on the Helmholtz equation show that the cost of factoriza-526

tion update only depends on the size of the modified subdomain and that the solution527

update cost is much faster than the standard direct solution algorithms. The solution528

update algorithms produce high accuracies as in expensive stand-alone direct solvers529

The method is suitable for solving the challenging cases where the updates have large530

magnitude and support.531
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