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Abstract. For general symmetric positive definite (SPD) matrices, we present a framework
for designing effective and robust black-box preconditioners via structured incomplete factorization.
In a scaling-and-compression strategy, off-diagonal blocks are first scaled on both sides (by the
inverses of the factors of the corresponding diagonal blocks) and then compressed into low-rank
approximations. ULV-type factorizations are then computed. A resulting prototype preconditioner
is always positive definite. Generalizations to practical hierarchical multilevel preconditioners are
given. Systematic analysis of the approximation error, robustness, and effectiveness is shown for
both the prototype preconditioner and the multilevel generalization. In particular, we show how
local scaling and compression control the approximation accuracy and robustness, and how aggressive
compression leads to efficient preconditioners that can significantly reduce the condition number and
improve the eigenvalue clustering. A result is also given to show when the multilevel preconditioner
preserves positive definiteness. The costs to apply the multilevel preconditioners are about O(N),
where N is the matrix size. Numerical tests on several ill-conditioned problems show the effectiveness
and robustness even if the compression uses very small numerical ranks. In addition, significant
robustness and effectiveness benefits can be observed as compared with a standard rank structured
preconditioner based on direct off-diagonal compression.
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1. Introduction. Preconditioners play a key role in iterative solutions of linear
systems. For symmetric positive definite (SPD) matrices, incomplete factorizations
have often been used to construct robust preconditioners. See [1, 2, 3, 13, 19, 22] for
some examples. In recent years, a strategy based on low-rank approximations has
been successfully used to design preconditioners, where certain off-diagonal blocks
are approximated by low-rank forms. Such rank structured preconditioners often
target at some specific problems, usually PDEs and integral equations (see,. e.g.,
[6, 10, 11, 14]). For more general sparse matrices, some algebraic preconditioners that
incorporate low-rank approximations appear in [15, 16, 17, 25].

For general (dense) SPD matrices A, limited work is available about the feasi-
bility and effectiveness of preconditioning techniques based on low-rank off-diagonal
approximations. In general, when the off-diagonal blocks of A are directly approx-
imated by low-rank forms with very low accuracy, it is not clear how effective the
resulting preconditioner is. The preconditioner may also likely fail to preserve the
positive definiteness that is crucial in many applications. Preliminary studies are
conducted in [12, 29, 23], where sequential Schur complement computations are used
to ensure positive definiteness in an idea of Schur monotonicity or Schur compensa-
tion. In [29], the effectiveness for preconditioning is analyzed in terms of a special
case.

In this paper, we consider the preconditioning of a general SPD matrix A based
on incomplete factorizations that involve low-rank off-diagonal approximations. (For
convenience, all our discussions are in terms of real dense SPD matrices.) We present a
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framework to construct effective and robust black-box structured preconditioners that
are convenient to analyze. In the framework, we compute a structured incomplete

factorization (SIF) A ≈ L̃L̃
T
, where appropriate off-diagonal blocks are first scaled

on both sides and then compressed (into low-rank approximations). The resulting pre-
conditioners (called SIF preconditioners) can effectively reduce the condition number
of A and bring the eigenvalues to cluster around 1. They are also robust in the sense
that they can preserve the positive definiteness (either unconditionally in a prototype
case or under a condition in a general case). More specifically, our main contribu-
tions include: (1) a fundamental SIF preconditioning framework, (2) the multilevel
generalization, and (3) systematic analysis. The details are as follows.

We give a fundamental SIF framework for designing effective and robust struc-
tured preconditioners for A. The framework includes a scaling-and-compression strat-
egy for matrix approximation and a ULV-type factorization. That is, instead of di-
rectly compressing an off-diagonal block, we scale the off-diagonal block on both sides
with the inverses of the factors of the corresponding diagonal blocks and then per-
form the compression. A sequence of orthogonal and triangular factors (called ULV

factors) is then computed. L̃ is defined by these ULV factors and L̃L̃
T

serves as
the preconditioner. We show that this preconditioner has superior effectiveness and
robustness.

The basic idea is illustrated in terms of a prototype preconditioner, which is shown
to be always positive definite regardless of the accuracy used in the compression. We
can also show that the local compression tolerance τ precisely controls the overall
(relative) approximation accuracy of the matrix and the factor (see Theorem 2.4).
Furthermore, we can justify the effectiveness of the preconditioner based on how τ
impacts the eigenvalue distribution and the condition number of the preconditioned
matrix L̃−1AL̃−T . In fact, the eigenvalues of L̃−1AL̃−T cluster inside [1 − τ, 1 + τ ].
Moreover, as long as the singular values of the scaled off-diagonal block slightly decay,

we can aggressively truncate them so as to get a compact preconditioner L̃L̃
T
that sig-

nificantly reduces the condition number of L̃−1AL̃−T . This is rigorously characterized
in terms of a representation 1+τ

1−τ in Theorem 2.5.
We further generalize the prototype preconditioner to multiple levels, where mul-

tilevel scaling-and-compression operations are combined with a hierarchical ULV-type
factorization. The robustness, accuracy, and effectiveness of the multilevel precondi-

tioner L̃L̃
T
are also shown. A condition for τ is given to ensure that the preconditioner

is positive definite (Theorem 3.1). We also prove the condition number of L̃−1AL̃−T

in a form similar to that in the prototype case, i.e., 1+ϵ
1−ϵ in Theorem 3.2, where ϵ is

related to τ . The eigenvalues of L̃−1AL̃−T cluster inside [ 1
1+ϵ ,

1
1−ϵ ].

The accuracy and effectiveness analysis confirms that, with low-accuracy approx-
imation, the preconditioners can significantly reduce the condition number and im-
prove the eigenvalue clustering.

The SIF framework and preconditioning techniques have some attractive features.
1. The scaling strategy can enhance the compressibility of the off-diagonal blocks

in some problems, where those blocks may have singular values very close to
each other. An example is the five-point discrete Laplacian matrix from a
2D regular grid, which has the identity matrix as the nonzero subblock in its
off-diagonal blocks.

2. The scaling-and-compression strategy also propagates diagonal block infor-
mation to off-diagonal blocks, so that it is convenient to justify the robustness
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and effectiveness. In the earlier work in [29], only the leading diagonal block
information is propagated to an off-diagonal block.

3. Unlike the method in [29] that involves Schur complement computations in a
sequential fashion, our SIF framework computes hierarchical ULV-type fac-
torizations and avoids the use of sequential Schur complement computations.
The construction of the preconditioner follows a binary tree, where the op-
erations at the same level can be performed simultaneously. This potentially
leads to much better scalability.

4. It is convenient to obtain a general multilevel preconditioner by repeatedly
applying the scaling-and-compression strategy. The cost to apply the result-
ing preconditioner is O(N logN), where N is the order of A. A modified
version is also provided and costs only O(N) to apply. The O(N logN) ver-
sion is generally more effective, while the O(N) version is slightly more robust
in practice.

5. Systematic analysis of the approximation accuracy, robustness, and effective-
ness is given, not only for the prototype preconditioner, but also for the
multilevel one. Multilevel error accumulation is analyzed. The eigenvalue
clustering and the resulting condition number are also shown. The studies in
[29] are restricted to a special 1-level case.

The performance of the preconditioners is illustrated in some numerical tests. In
particular, we use aggressive compression (with very small ranks in the approxima-
tion of the scaled off-diagonal blocks) and get satisfactory convergence in iterative
solutions. For some highly ill-conditioned problems such as some interpolation ma-
trices in radial basis function methods, our preconditioners can still preserve positive
definiteness and also greatly accelerate the convergence. On the other hand, a struc-
tured preconditioner based on direct off-diagonal compression (as in traditional rank
structured methods) yields slower convergence, and also fails to be positive definite.

The outline of the paper is as follows. We first present the fundamental SIF
preconditioning framework in Section 2. The prototype preconditioner and its analysis
are included. The generalization of the framework and analysis to multiple levels is
given in Section 3, followed by numerical tests in Section 4. The following notation
will be used throughout the discussions.

• λ(A) denotes an eigenvalue of A, and we usually use λ(A) to mean any eigen-
value of A in general.

• λ1(A) and λN (A) specifically denote the largest and smallest eigenvalues of
A, respectively.

• ρ(A) denotes the spectral radius of A.
• κ(A) is the 2-norm condition number of A.
• diag(·) represents a diagonal or block diagonal matrix with the given diagonal
entries/blocks.

2. Fundamental SIF preconditioning framework and analysis. One es-
sential idea of our preconditioners is a scaling-and-compression strategy: the off-
diagonal blocks are first scaled on both sides by the inverses of the factors of the
corresponding diagonal blocks and then compressed. The work in [29] only uses the
scaling on the left by the inverse of the leading factor, and the scaling on both sides
is mentioned without details. The double-sided scaling strategy is first formally men-
tioned in our presentation [26]. Here, we show that, with the double-sided scaling
and compression, it becomes very convenient to justify the effectiveness (and also to
generalize to multiple levels in the next section). Also unlike in [29], our schemes do
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not need sequential Schur complement computations.
In this section, we present our scaling-and-compression strategy in a prototype

preconditioner. Then we rigorously show its properties. The preconditioner and
analysis will be generalized to multiple levels in Section 3.

2.1. Scaling-and-compression strategy. Consider an N ×N SPD matrix A
partitioned into a block 2× 2 form

(2.1) A ≡
(

A11 AT
21

A21 A22

)
,

where the two diagonal blocks A11 and A22 are square matrices. Suppose the Cholesky
factorizations of the diagonal blocks look like

(2.2) A11 = L1L
T
1 , A22 = L2L

T
2 .

Then

(2.3) A =

(
L1

L2

)(
I C
CT I

)(
LT
1

LT
2

)
,

where the identity matrices may have different sizes, and

(2.4) C = L−1
1 AT

21L
−T
2 .

Compute an SVD

(2.5) C =
(
U1 Û1

)( Σ

Σ̂

)(
UT
2

ÛT
2

)
= U1ΣU

T
2 + Û1Σ̂Û

T
2 ,

where Σ = diag(σ1, . . . , σr) is for the leading singular values σ1, . . . , σr of C, and
Σ̂ = diag(σr+1, σr+2, . . .) is for the remaining singular values σr+1, σr+2, . . . of C.
(Σ is a square matrix, and Σ̂ may be rectangular.

(
U1 Û1

)
and

(
U2 Û2

)
are

square matrices.) Suppose all the singular values are ordered from the largest to the
smallest, and

(2.6) σr+1 ≤ τ ≤ σr.

Later, τ will be used as a tolerance for the truncation of the singular values in Σ̂.
Before we proceed, we give the following simple lemma.
Lemma 2.1. Suppose C̃ is an m×n matrix with singular values σ̃i, i = 1, 2, . . . ,

min{m,n}. Let H =

(
I C̃

C̃T I

)
. Then H has an eigenvalue 1 with multiplicity

m+ n− 2min{m,n}, and its remaining eigenvalues are given by

1± σ̃i, i = 1, 2, . . . ,min{m,n}.

Furthermore, H is SPD if and only if σ̃i < 1, i = 1, 2, . . . ,min{m,n}.
Proof. Suppose Σ̃ is anm×n diagonal matrix with the main diagonal entries given

by σ̃i, i = 1, 2, . . . ,min{m,n}. Then H is similar to

(
I Σ̃

Σ̃T I

)
, whose eigenvalues

are either 1 or 1± σ̃i.
This result then immediately implies that H is positive definite if and only if

σ̃i < 1.
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Since A is SPD, so is

(
I C
CT I

)
in (2.3). Then Lemma 2.1 leads to the following

result.
Lemma 2.2. All the singular values σi of C in (2.4) satisfy σi < 1, i = 1, 2, . . .
To construct a structured incomplete preconditioner, we truncate the singular

values of C in (2.4) by dropping Σ̂ in (2.5). Then

(2.7) A ≈ Ã ≡
(

L1

L2

)(
I U1ΣU

T
2

U2ΣU
T
1 I

)(
LT
1

LT
2

)
.

We can continue to factorize the matrix in the middle of the right-hand side so as to
obtain a preconditioner. For the analysis purpose, we tentatively use the Cholesky
factorization. (Later in Section 2.4, this will be replaced by a more practical ULV
factorization.) That is,

(2.8)

(
I U1ΣU

T
2

U2ΣU
T
1 I

)
=

(
I

U2ΣU
T
1 I

)(
I

S̃

)(
I U1ΣU

T
2

I

)
,

where S̃ is the Schur complement

(2.9) S̃ = I − U2Σ
2UT

2 .

From Proposition 2.3 below, we can see that S̃ is positive definite, so assume S̃ =
D̃2D̃

T
2 is its Cholesky factorization. Thus,(

I U1ΣU
T
2

U2ΣU
T
1 I

)
=

(
I

U2ΣU
T
1 D̃2

)(
I U1ΣU

T
2

D̃T
2

)
.

Then a prototype preconditioner looks like

Ã = L̃L̃
T
, with(2.10)

L̃ =

(
L1

L2

)(
I

U2ΣU
T
1 D̃2

)
=

(
L1

L2U2ΣU
T
1 L2D̃2

)
.

Remark 2.1. Our scheme here is more general than the one in [29], and there
are some fundamental differences.

1. Double-sided scaling L−1
1 AT

21L
−T
2 is used here in (2.4), while single-sided scal-

ing L−1
1 AT

21 is used in [29]. The double-sided scaling and compression make
it convenient to control the approximation accuracy of Ã, and can be used to
produce more general and comprehensive analysis. See the next subsection.
The analysis in [29] is restricted to a special case.

2. Explicit Schur complement computation is needed in [29] to get a structured
Cholesky factorization, which is essentially a sequential process. Our ULV
factorization in Section 2.4 will avoid the Schur complements. The mentioning
of the Schur complement above is only for the analysis purpose, and is not
needed in the implementation.

3. The generalization of the prototype preconditioner (based on 1-level block 2×
2 partitioning) to multiple levels is also more natural via repeated application.
We will further provide accuracy, effectiveness, and robustness analysis for our
multilevel version. See Section 3. No such type of analysis is available in [29].
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2.2. Robustness and accuracy. We then discuss the robustness and accuracy
of the prototype preconditioner Ã in (2.7) (and also (2.10)). We show that Ã is
guaranteed to be positive definite, and it approximates A by a relative error bound
precisely controlled by the (absolute) compression tolerance τ . The tolerance τ also
controls the approximation accuracy of L̃.

Proposition 2.3. Ã in (2.7) resulting from the truncation of Σ̂ in (2.5) is always
positive definite.

Proof. There are multiple ways to show the result. We prove it from an aspect

that clearly reflects the robustness of the preconditioner. Since

(
I C
CT I

)
is SPD,

the following Schur complement is also SPD:

(2.11) S ≡ I − CTC = I − U2Σ
2UT

2 − Û2Σ̂
T Σ̂ÛT

2 .

(Note that Σ̂ is allowed to be rectangular.) On the other hand, (2.9) means

(2.12) S̃ = S + Û2Σ̂
T Σ̂ÛT

2 .

Thus, S̃ in (2.8) is SPD. Accordingly,

(
I U1ΣU

T
2

U2ΣU
T
1 I

)
in (2.8) is SPD. (2.7)

then indicates Ã is SPD. (The relationship in (2.12) is consistent with the idea of
Schur monotonicity or Schur compensation in [12, 29], and leads to the enhanced
robustness of Ã.)

An alternative proof can be based on Lemma 2.1.
We then show the approximation accuracy of Ã and L̃ in terms of the truncation

tolerance τ .
Theorem 2.4. Suppose L is the exact lower triangular Cholesky factor of A.

Then

∥A− Ã∥2 ≤ τ∥A∥2,

∥L− L̃∥2 ≤ τ

(
1 +

2dn
√
1− σ2

n

1− σ2
1

τ

)
∥L∥2,

where dn = 1
2 + ⌈log2 n⌉ and n is the column size of C.

Proof. Note that (2.6) and Lemma 2.2 imply τ < 1. According to (2.3), (2.5),
and (2.7), the approximation error matrix is given by

A− Ã =

(
L1

L2

)(
0 Û1Σ̂Û

T
2

Û2Σ̂
T ÛT

1 0

)(
LT
1

LT
2

)
=

(
0 L1Û1Σ̂Û

T
2 LT

2

L2Û2Σ̂
T ÛT

1 LT
1 0

)
.

Thus,

∥A− Ã∥2 = ∥L1Û1Σ̂Û
T
2 LT

2 ∥2 ≤ ∥L1∥2∥Σ̂∥2∥L2∥2
= σr+1

√
∥A11∥2∥A22∥2 ≤ τ∥A∥2,

where we have used the relationship between the 2-norm of an SPD matrix and the
2-norm of its Cholesky factor.
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Next, consider the approximation accuracy of L̃. Suppose S = D2D
T
2 is the

Cholesky factorization of S in (2.11). According to (2.3) and (2.5),

(2.13) L =

(
L1

L2

)(
I
CT D2

)
=

(
L1

L2(U2ΣU
T
1 + Û2Σ̂

T ÛT
1 ) L2D2

)
.

This together with (2.10) yields

L− L̃ =

(
0 0

L2Û2Σ̂
T ÛT

1 L2(D2 − D̃2)

)
.

Thus,

∥L− L̃∥2 =
∥∥( L2Û2Σ̂

T ÛT
1 L2(D2 − D̃2)

)∥∥
2

≤ ∥L2∥2
∥∥( Û2Σ̂

T ÛT
1 D2 − D̃2

)∥∥
2

≤ ∥L2∥2(τ + ∥D2 − D̃2∥2)

= (τ + ∥D2 − D̃2∥2)
√
∥A22∥2

≤ (τ + ∥D2 − D̃2∥2)
√
∥A∥2

= (τ + ∥D2 − D̃2∥2)∥L∥2.

According to [9], the Cholesky factor D̃2 of S̃ satisfies the approximation error
bound

∥D2 − D̃2∥2 ≤ 2dn∥S−1∥2∥D2∥2∥S − S̃∥2 = 2dn∥S−1∥2∥D2∥2σ2
r+1,

where dn = 1/2 + ⌈log2 n⌉ and n is the column size of C (and also the size of S).
From (2.5) and (2.11) and noticing Lemmas 2.1–2.2, we can see that

∥S−1∥2 =
1

1− σ2
1

, ∥D2∥2 =
√
1− σ2

n.

Thus,

∥D2 − D̃2∥2 ≤ 2dn

√
1− σ2

n

1− σ2
1

σ2
r+1 ≤

2dn
√

1− σ2
n

1− σ2
1

τ2,

∥L− L̃∥2 ≤

(
τ +

2dn
√
1− σ2

n

1− σ2
1

τ2

)
∥L∥2 = τ

(
1 +

2dn
√

1− σ2
n

1− σ2
1

τ

)
∥L∥2.

Theorem 2.4 and Lemma 2.2 indicate that the (absolute) tolerance τ in (2.6)
for the compression of C essentially plays a role of a relative error bound in the
approximation of A by Ã. τ also controls the relative approximation accuracy of the

Cholesky factor L. In fact, if τ is not too large and satisfies
2dn

√
1−σ2

n

1−σ2
1

τ = O(1), then

∥L− L̃∥2 = O(τ)∥L∥2.

2.3. Effectiveness of the preconditioner. Theorem 2.4 indicates that we can
use τ to control how accurately Ã approximates A and L̃ approximates L. Moreover,
since we are interested in preconditioning, we would like to show that τ does not have
to be very small to yield an effective preconditioner. A larger tolerance τ means a
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more compact SIF preconditioner that is more efficient to apply. Note that our scheme
here is different and more general than the one in [29] (see Remark 2.1). However, we
can still prove effectiveness results similar to those in [29] (and even stronger), though
the double-sided scaling makes the analysis much less trivial here.

Theorem 2.5. For L̃ in (2.10), we have

L̃−1AL̃−T =

(
I Ĉ

ĈT I

)
,

where Ĉ = Û1Σ̂Û
T
2 D̃−T

2 and

(2.14) ∥Ĉ∥2 = σr+1 ≤ τ.

Moreover,

∥L̃−1AL̃−T − I∥2 = σr+1,(2.15)

|λ(L̃−1AL̃−T )− 1| ≤ σr+1,(2.16)

κ(L̃−1AL̃−T ) =
1 + σr+1

1− σr+1
≤ 1 + τ

1− τ
.(2.17)

Proof. According to (2.10) and (2.13),

L̃−1AL̃−T =

(
I

U2ΣU
T
1 D̃2

)−1(
I
CT D2

)(
I C

DT
2

)(
I U1ΣU

T
2

D̃T
2

)−1

=

(
I

D̃−1
2

)(
I

CT − U2ΣU
T
1 D2

)(
I C − U1ΣU

T
2

DT
2

)(
I

D̃−T
2

)
=

(
I

D̃−1
2

)(
I

Û2Σ̂
T ÛT

1 D2

)(
I Û1Σ̂Û

T
2

DT
2

)(
I

D̃−T
2

)
=

(
I Û1Σ̂Û

T
2 D̃−T

2

D̃−1
2 Û2Σ̂

T ÛT
1 D̃−1

2 (Û2Σ̂
T Σ̂ÛT

2 + S)D̃−T
2

)
=

(
I Û1Σ̂Û

T
2 D̃−T

2

D̃−1
2 Û2Σ̂

T ÛT
1 D̃−1

2 S̃D̃−T
2

)
=

(
I Ĉ

ĈT I

)
.

Next, we show (2.14). Notice that the 2-norm of a symmetric matrix is equal to
its spectral radius. We have

∥Ĉ∥22 = ∥ĈT Ĉ∥2 = ∥D̃−1
2 (Û2Σ̂

T Σ̂ÛT
2 )D̃−T

2 ∥2
= ρ(D̃−1

2 (Û2Σ̂
T Σ̂ÛT

2 )D̃−T
2 ) = ρ(D̃−T

2 D̃−1
2 (Û2Σ̂

T Σ̂ÛT
2 ))

= ρ(S̃−1(Û2Σ̂
T Σ̂ÛT

2 )

= ρ((I − U2Σ
2UT

2 )−1(Û2Σ̂
T Σ̂ÛT

2 ).

According to the Sherman-Morrison-Woodbury formula,

(I − U2Σ
2UT

2 )−1 = [I − (U2Σ)(U2Σ)
T ]−1

= I − (U2Σ)[I + (U2Σ)
T (U2Σ)]

−1(U2Σ)
T .

= I − U2Σ(I +Σ2)−1ΣTUT
2 .
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Thus,

∥Ĉ∥22 = ρ([I − U2Σ(I +Σ2)−1ΣTUT
2 ](Û2Σ̂

T Σ̂ÛT
2 ))

= ρ(Û2Σ̂
T Σ̂ÛT

2 ) = ∥Û2Σ̂
T Σ̂ÛT

2 ∥2 = σ2
r+1,

where UT
2 Û2 = 0 is used.

The remaining results can then be conveniently shown. (2.15) is obvious. Lemma

2.1 means that

(
I Ĉ

ĈT I

)
has the largest eigenvalue 1 + σr+1 and the smallest

eigenvalue 1− σr+1. This leads to (2.16) and (2.17).
Theorem 2.5 indicates that τ also controls how close the preconditioned matrix

L̃−1AL̃−T is to I and how closely λ(L̃−1AL̃−T ) clusters around 1.
Moreover, the effectiveness of the preconditioner (when τ is not small) can be

interpreted from the theorem similarly to [29]. That is, when the singular values σi of
C decay, the condition number 1+σr+1

1−σr+1
after truncation decays much faster. (In [29],

this is illustrated in terms of a special case.) A similar study of the decay property
is also done in [17] for some Schur complement based preconditioners. Here, we can
further rigorously characterize this as follows. Suppose s(t) is a differentiable and
non-increasing function with t > 0, 0 ≤ s(t) < 1. Its decay rate at t can be reflected

by its slope s′(t). Then for f(t) = 1+s(t)
1−s(t) ,

f ′(t) = θ(t)s′(t), with θ(t) =
2

(1− s(t))2
.

This indicates that, the slope of f(t) at t is that of s(t) enlarged by a magnification
factor θ(t). The closer t is to 0 (or s is to 1), the larger θ(t) is and the faster f(t)
decays. Accordingly, this means that a relatively small t can already bring f(t) to a
reasonable magnitude.

That is, by keeping a relatively small number of largest singular values σi of C
(σi ∈ [0, 1)), we can get a reasonable condition number after preconditioning. Notice
that the singular value truncation is controlled by (2.6). We can thus use a relatively
large tolerance τ for preconditioning. For example, for selected values of τ , the cor-
responding bounds for κ(L̃−1AL̃−T ) and the decay magnification factors are given
in Table 2.1. For τ as large as 0.95, we already have a reasonable condition number
bound 1+τ

1−τ = 39. In practice, the faster σi decays, the better the preconditioner
works.

Table 2.1
Understanding the decay behavior of the condition number of the preconditioned matrix in

terms of the decay of the singular values σi when the singular values smaller than or equal to τ are
truncated.

τ 0.999 0.99 0.95 0.9
2

(1−τ)2 2× 106 2× 104 8× 102 2× 102

1+τ
1−τ 1999 199 39 19

In particular, for a 5-point discrete 2D Laplacian matrix A evenly partitioned into
a block 2× 2 form, we can compute C and investigate its singular values σi, and then
show the resulting condition number if all the singular values σi satisfying σi ≤ τ are
truncated. See Figure 2.1. Clearly, for smaller indices i, the magnification factors θ



10 JIANLIN XIA AND ZIXING XIN

are larger and the condition number decays faster. By keeping only a small number
of singular values or using a small numerical rank r, we can already get a reasonable
condition number.

Index i
1 10 100 1000 5000

σ
i

0.3

0.5

0.7

0.9

Index i
1 10 100 1000 5000

(1
+
σ
i)
/(
1
−
σ
i)

100

101

102

103

104

Index i
1 10 100 1000 5000

2/
(1

−
σ
i)
2

100

102

104

106

108

(a) Singular value (b) Condition number (c) Magnification factor

σi
1+σi
1−σi

θi =
2

(1−σi)2

Fig. 2.1. For a 5-point discrete Laplacian matrix A evenly partitioned into a block 2× 2 form,
(a) shows how the nonzero singular values σi of C decay, (b) shows how the condition number of
the preconditioned matrix decays when the singular values smaller than or equal to σi are truncated,
and (c) shows the factor that magnifies the decay.

Remark 2.2. For some model problems such as the 5-point discrete Laplacian
matrix, the analytical derivation of the singular values of C will appear in [31]. It
can further be shown that κ(L̃−1AL̃−T ) = O(

√
N) when r is set to be O(1). This is

beyond the focus here.

2.4. Basic ULV factorization scheme. As mentioned in Remark 2.1, the
preconditioning scheme in [29] has several limitations, one of which is the sequential
computation of Schur complements. This can be avoided by using a ULV-type fac-
torization that is similar to (but simpler than) the ones in [5, 28] for hierarchically
semiseparable (HSS) matrices. The idea is to introduce zeros into the scaled (1, 2)
and (2, 1) off-diagonal blocks simultaneously and then obtain reduced matrices. More
specifically, for Ui, i = 1, 2 in (2.7), suppose Qi is an orthogonal matrix such that

QT
i Ui =

(
0
I

)
. Then

(
I U1ΣU

T
2

U2ΣU
T
1 I

)

=

(
Q1

Q2

) I

(
0
I

)
Σ
(
0 I

)(
0
I

)
Σ
(
0 I

)
I

( QT
1

QT
2

)
.

Let Π3 be an appropriate permutation matrix such that(
I U1ΣU

T
2

U2ΣU
T
1 I

)
=

(
Q1

Q2

)
Π3

(
I

D3

)
ΠT

3

(
QT

1

QT
2

)
,

where D3 =

(
I Σ
Σ I

)
is a small (2r × 2r) matrix called reduced matrix. Π3 is used

to assemble D3. Then directly compute a Cholesky factorization of D3 = L3L
T
3 to
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complete the factorization. This in turn gives a factorization of Ã in (2.7) that looks
like

Ã = L̃3L̃
T
3 , with(2.18)

L̃3 =

(
L1

L2

)(
Q1

Q2

)
Π3

(
I

L3

)
.

L̃3 is said to be a ULV factor, since it is given by a sequence of orthogonal and
triangular matrices. (The term “ULV factor” here follows the name in HSS ULV
factorizations [5], and differs from the traditional sense of ULV factors.) Notice that
the operations associated with i = 1, 2 can be performed independently, and this
avoids the sequential computation of a Schur complement.

Thus, the overall SIF framework includes the scaling-and-compression strategy
followed by the ULV factorization. With the 1-level block 2 × 2 partitioning, we get
the prototype preconditioner (2.18).

3. Practical multilevel SIF preconditioners and analysis. The fundamen-
tal ideas for the prototype preconditioner in the previous section can be conveniently
generalized to practical preconditioners with multiple levels of partitioning. In the
following, we describe our multilevel SIF framework, including a multilevel scaling-
and-compression strategy combined with a multilevel ULV factorization. We have
two versions for the multilevel generalization, with some differences in the perfor-
mance. To describe the preconditioners and analysis, we list commonly used notation
as follows.

• I = {1 : N} is the entire index set for A. For an index subset si ⊂ I, I\si is
its complement.

• T represents a postordered binary tree with the nodes labeled as i = 1, 2, . . . ,
root(T ), where root(T ) denotes the root node. Suppose root(T ) is at level 0,
and the leaves are at the bottom level L.

• sib(i) and par(i) denote the sibling and parent of node i in T , respectively.
• Each node i of T is associated with a set si of consecutive indices. These sets
satisfy sroot(T ) = I, and si = sc1 ∪ sc2 , sc1 ∩ sc2 = ∅ if i is a nonleaf node
with children c1 and c2.

• A|si×sj represents the submatrix of A with row index set si and column index
set sj .

• b|si represents the vector selected from a vector b with the index set si.

3.1. Multilevel SIF preconditioner. To generalize the ideas in the previous
section to multiple levels, we can apply the scheme repeatedly to the diagonal blocks
A11 and A22 in (2.1). This can be done following a binary tree T , and the operations
corresponding to the nodes at the same level of T can be performed simultaneously.
We can further avoid the top-down recursion by organizing all the local operations
along a bottom-up traversal of T . At each level of T , suppose A is partitioned
following the index set si associated with each node i at that level. The number of
partition levels L will be decided at the end of this subsection.

In the traversal of T , for a leaf node i, directly compute the Cholesky factorization
of the corresponding diagonal block

(3.1) A|si×si = LiL
T
i .

Also for later notational consistency, set L̃i ≡ Li. For a nonleaf node i, suppose c1
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and c2 are its left and right children, respectively. Then

A|si×si =

(
A|sc1×sc1

A|sc1×sc2
A|sc2×sc1

A|sc2×sc2

)
.

By induction as in (3.6) below, the diagonal blocks have been (approximately) fac-
torized as

(3.2) A|sc1×sc1
≈ L̃c1L̃

T
c1 , A|sc2×sc2

≈ L̃c2L̃
T
c2 .

Thus,
(3.3)

A|si×si ≈
(

L̃c1

L̃c2

)(
I L̃−1

c1 A|sc1×sc2
L̃−T
c2

L̃−1
c2 A|sc2×sc1

L̃−T
c1 I

)(
L̃T
c1

L̃T
c2

)
.

Then just like the 1-level scheme in Section 2, we computed the compression (approx-
imate SVD)

(3.4) L̃−1
c1 A|sc1×sc2

L̃−T
c2 ≈ Uc1Σc1U

T
c2 ,

and introduce zeros into this block by using orthogonal matrices Qc1 and Qc2 such
that

(3.5) QT
c1Uc1 =

(
0
I

)
, QT

c2Uc2 =

(
0
I

)
.

Since L̃c1 and L̃c2 are structured factors, the formation of L̃−1
c1 A|sc1×sc2

L̃−T
c2 in (3.4)

involves multiple structured solutions. This yields a factorization just like in (2.18):

A|si×si ≈ L̃iL̃
T
i , with(3.6)

L̃i =

(
L̃c1

L̃c2

)(
Qc1

Qc2

)
Πi

(
I

Li

)
,

where Πi is an appropriate permutation matrix to assemble the reduced matrix Di =(
I Σc1

Σc1 I

)
, and Li is the lower triangular Cholesky factor of Di. (Later in Section

3.2, we will discuss a condition that guarantees the positive definiteness.) The formula
gives a recursive representation for L̃i.

Thus, it is clear that the algorithm generates a sequence of orthogonal matrices
Qi and triangular matrices Li. These matrices Qi, Li (together with the rotations Πi)
define a ULV factor L̃ in an approximate ULV factorization

(3.7) A ≈ Ã ≡ L̃L̃
T
,

where L̃ ≡ L̃root(T ). Our multilevel SIF preconditioner is then L̃L̃
T
.

The application of the preconditioner is also done following the traversal of T . For
example, consider the solution of the following linear system via forward substitution:

L̃y = b.

Partition b into pieces b|si following the leaf level index sets si. For each leaf i,
compute

yi = QT
i L

−1
i b|si .
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For each nonleaf node i with children c1 and c2, compute

yi = QT
i

(
I

L−1
i

)
ΠT

i

(
yc1
yc2

)
.

When root(T ) is reached, we obtain the solution y ≡ yroot(T ). The backward substi-
tution is done similarly.

The costs of the construction and application of the preconditioner can be con-
veniently counted. Suppose r is the maximum rank used for the compression or
truncated SVD in (3.4). The repeated diagonal partition is done until the finest level
diagonal block sizes are around r. Thus, L ≈ log N

r . Then the approximate factoriza-

tion costs O(rN2 log N
r ) flops. (Notice that A is a general SPD matrix. This cost can

be reduced when A is sparse or has some special properties.) To get a preconditioner,
we set r = O(1). The cost to apply the resulting preconditioner is O(N logN). The
storage is also O(N logN). The logN term in the costs is due to the size of Qi, which
is roughly N

2l
if i is at level l. (Qi results from the extension of Ui into an orthogo-

nal matrix, which can be done via Householder transformations for convenience. See
(3.5). Thus, Qi can be represented in terms of r Householder vectors.) We can remove
the logN term in a modified scheme in Section 3.3.

3.2. Robustness, accuracy, and effectiveness of the multilevel precondi-
tioner. We then provide analysis for the multilevel preconditioner. For convenience,
introduce the notation A(l) corresponding to the levels l = 0, 1, . . . ,L of T so as to
track the error accumulation at each level. Initially, A(L) ≡ A. For each (leaf) node
i at level L, we compute the Cholesky factorization (3.1). At this level, no approxi-
mation is involved. Then for each node i at level l < L, the scaling-and-compression
strategy in (3.2)–(3.4) is applied, producing an approximate factorization in (3.6).
This yields the approximation of A(l+1) by A(l), where the diagonal block A(l+1)|si×si

is approximated by A(l)|si×si ≡ L̃iL̃
T
i . This process then continues, and produces a

sequence of approximations to A:

(3.8) A(L)(≡ A) =⇒ A(L−1) =⇒ · · · =⇒ A(0)(≡ Ã),

where Ã is the final preconditioner in a factorized form.
Since A(L−1) approximates A with modified diagonal blocks, A(L−1) may not be

positive definite. Similarly, A(l) for l < L may not be positive definite. We would
like to study the levelwise error accumulation and give a condition for A(l) to remain
positive definite.

Theorem 3.1. Let τ be the tolerance of the truncated SVD in the scaling-and-
compression strategy in (3.2)–(3.4) to generate the matrices A(l), l = L−1,L−2, . . . , 0
in (3.8) with L ≥ 1. If

(3.9) (1 + τ)L < 1 +
1

κ(A)
,

then each A(l) is positive definite, and

∥A− Ã∥2 ≤ [(1 + τ)L − 1]∥A∥2.

Proof. (3.9) means

(3.10) [(1 + τ)L − 1]∥A∥2 < λN (A),
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where λN (A) is the smallest eigenvalue of A. For l = L − 1,L − 2, . . . , 0, we show

∥A−A(l)∥2 ≤ [(1 + τ)L − 1]∥A∥2 < λN (A).

Then Weyl’s Theorem means that each A(l) is SPD.
For l = L − 1, the matrix A(L−1) is obtained from A through the 1-level scaling

and compression, where A|si×si is approximated as in (3.6) for each node i at level
L − 1. Thus, Theorem 2.4 indicates

∥A|si×si −A(L−1)|si×si∥2 ≤ τ∥A|si×si∥2.

Accordingly,

∥A−A(L−1)∥2 ≤ τ max
i at levelL−1

{∥A|si×si∥2} ≤ τ∥A∥2.

Since τ ≤ (1 + τ)L − 1, (3.10) means

∥A−A(L−1)∥2 ≤ τ∥A∥2 ≤ [(1 + τ)L − 1]∥A∥2 < λN (A).

Thus, A(L−1) is SPD.
The factorization can then proceed to level l = L− 2 (when L ≥ 2). Similarly to

the argument as above, we have

∥A(L−1) −A(L−2)∥2 ≤ τ∥A(L−1)∥2.

By the triangle inequality,

∥A−A(L−2)∥2 ≤ ∥A−A(L−1)∥2 + ∥A(L−1) −A(L−2)∥2(3.11)

≤ ∥A−A(L−1)∥2 + τ∥A(L−1)∥2
≤ ∥A−A(L−1)∥2 + τ(∥A−A(L−1)∥2 + ∥A∥2)
≤ (1 + τ)∥A−A(L−1)∥2 + τ∥A∥2
≤ [(1 + τ) + 1]τ∥A∥2 = [(1 + τ)2 − 1]∥A∥2.

Then by (3.10),

∥A−A(L−2)∥2 ≤ [(1 + τ)L − 1]∥A∥2 < λN (A).

This leads to the positive definiteness of A(L−2).
The process then proceeds by induction. In fact, just like in (3.11), for level

l < L − 1, we can get an error accumulation pattern

∥A−A(l)∥2 ≤ (1 + τ)∥A−A(l+1)∥2 + τ∥A∥2.

Thus,

∥A−A(0)∥2 ≤ (1 + τ)∥A−A(1)∥2 + τ∥A∥2
≤ (1 + τ)[(1 + τ)∥A−A(2)∥2 + τ∥A∥2] + τ∥A∥2
≤ · · · ≤ [(1 + τ)L−1 + · · ·+ (1 + τ) + 1]τ∥A∥2
= [(1 + τ)L − 1]∥A∥2 < λN (A).
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This completes the proof.
Thus, if τ is smaller than roughly 1

Lκ(A) , then the preconditioner Ã is always

positive definite, and it approximates A to the accuracy about Lτ . Of course, this
is still a very conservative estimate. In practice, the positive definiteness is often
well preserved by Ã for various ill-conditioned matrices A even with relative large
τ . See the examples in Section 4. Our modified scheme in Section 3.3 has even
better robustness in practice. (In our future work, we will investigate the feasibility
of improving the methods and analysis to avoid the term κ(A) in the condition.)

The following theorem shows the effectiveness of the multilevel preconditioner
in terms of the eigenvalues and the condition number of the preconditioned matrix
L̃−1AL̃−T . We also show how close L̃−1AL̃−T is to I.

Theorem 3.2. With the same conditions as in Theorem 3.1 and with L̃ in (3.7),
the eigenvalues of L̃−1AL̃−T satisfies

(3.12)
1

1 + ϵ
≤ λ(L̃−1AL̃−T ) ≤ 1

1− ϵ
,

where ϵ = [(1 + τ)L − 1]κ(A) < 1. Accordingly,

∥L̃−1AL̃−T − I∥2 ≤ ϵ

1− ϵ
,

κ(L̃−1AL̃−T ) ≤ 1 + ϵ

1− ϵ
.(3.13)

Proof. (3.9) means ϵ < 1. Note that the eigenvalues of L̃−1AL̃−T are the inverses
of the eigenvalues of L−1ÃL−T , where A = LLT . By Theorem 3.1,

∥L−1ÃL−T − I∥2 = ∥L−1(Ã−A)L−T ∥2
≤ ∥A− Ã∥2∥L−1∥2∥L−T ∥2
≤ [(1 + τ)L − 1]∥A∥2∥L−1∥2∥L−T ∥2
= [(1 + τ)L − 1]∥A∥2∥A−1∥2 = ϵ.

Note that

∥L−1ÃL−T − I∥2 = max{|λN (L−1ÃL−T )− 1|, |λ1(L
−1ÃL−T )− 1|}.

Thus,

(3.14) |λN (L−1ÃL−T )− 1| ≤ ϵ.

This yields

λN (L−1ÃL−T ) ≥ 1− ϵ.

(In fact, either λN (L−1ÃL−T ) ≥ 1, or otherwise, (3.14) means 1− λN (L−1ÃL−T ) ≤
ϵ.) Accordingly,

(3.15) λ1(L̃
−1AL̃−T ) =

1

λN (L−1ÃL−T )
≤ 1

1− ϵ
.

On the other hand,

λ1(L
−1ÃL−T ) = ∥L−1ÃL−T ∥2 ≤ 1 + ∥L−1ÃL−T − I∥2 ≤ 1 + ϵ.
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Accordingly,

(3.16) λN (L̃−1AL̃−T ) =
1

λ1(L−1ÃL−T )
≥ 1

1 + ϵ
.

Combining (3.15) and (3.16) yields (3.12) and (3.13).
As a consequence,

∥L̃−1AL̃−T − I∥2 = max{|λ1(L̃
−1AL̃−T )− 1|, |λN (L̃−1AL̃−T )− 1|}

≤ max{ 1

1− ϵ
− 1, 1− 1

1 + ϵ
}

≤ ϵ

1− ϵ
.

Therefore, in the multilevel case, ϵ plays a role similar to τ in the 1-level case in
Theorem 2.5. We can then similarly understand the effectiveness of the preconditioner
when aggressive compression with relatively large τ is used, like in the end of Section
2.3 (Table 2.1 and Figure 2.1).

3.3. Modified multilevel SIF preconditioner. In the multilevel scheme in
Section 3.1, the resulting Qi factors have sizes equal to the sizes of the corresponding
index sets si. Such sizes increase when we advance to upper level nodes. There are
different ways to save some computational costs. One way is to instead scale and
compress the off-diagonal blocks A|si×(I\si) in a hierarchical scheme. A|si×(I\si) is
essentially called an HSS block row (a block row without the diagonal block) [28].
Some nested basis matrices will be produced. This can avoid the scaling and com-
pression of large dense off-diagonal blocks since A|si×(I\si) may include subblocks
that have already been compressed in previous steps. However, it makes the scaling
on the right more delicate. Thus, we use a modified version. That is, we first apply
the left scaling to A|si×(I\si), perform compression, and compute ULV factorization.
Since the entire block row A|si×(I\si) (instead of just A|si×sj for j = sib(i)) is scaled
on the left, the symmetry indicates that the right-side scaling is implicitly built in.
This will become clear later in (3.21) and (3.22).

We would first like to mention a notation issue. In the algorithm, when A|si×(I\si)
of A is compressed (by a rank-revealing QR factorization) as A|si×(I\si) ≈ UiTi,
the matrix Ti can reuse the storage for A|si×(I\si). For convenience, we write this

compression step as A|si×(I\si) ≈ UiÂ
(i)|ŝi×(I\si), where Â(i)|ŝi×(I\si) indicates the

storage of Ti in A with the row index set ŝi and column index set I\si. Such a
notation scheme is used in [27] and makes it convenient to identify the subblocks that
have been compressed in earlier steps. The symbols Â(i) are only for the purpose of
organizing the compression steps, and do not imply any extra storage.

During the factorization, we try to take advantage of previous compression infor-
mation as much as possible by keeping track of compressed subblocks. This is done
with the aid of a visited set in [27].

Definition 3.3. For a node i of a postordered binary tree T , a visited set Vi is
defined to be

Vi = {j: j < i and sib(j) is an ancestor of i}.

The visited set essentially corresponds to the roots of all the subtrees with indices
smaller than i. Those nodes have been traversed, and correspond to blocks that are
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highly compressed. A detailed explanation of this and a pictorial illustration of Vi

can be found in [27]. In fact, Vi can be made more general to include the roots of
all the subtrees previous visited, not necessarily those smaller than i. We follow the
original definition in [27] just for the convenience of presentation.

The modified multilevel SIF works as follows. For a leaf node i of T , compute
the Cholesky factorization as in (3.1) and set L̃i ≡ Li. We then scale and compress
the off-diagonal block A|si×(I\si). Note that, due to the symmetry, some subblocks
of A|si×(I\si) may have been compressed in the previous steps. Assume

(3.17) Vi = {k1, k2, . . . , kα: k1 < · · · < kα},

where α is the number of elements in Vi and depends on i. Form

Ωi =
( (

(Â(k1)|ŝk1
×si)

T · · · (Â(kα)|ŝkα×si)
T
)

A|si×s+i

)
,

where s+i ⊂ I contains all indices larger than those in si, and (Â(k1)|ŝk1
×si)

T , . . . ,

(Â(kα)|ŝkα×si)
T are results from earlier compression steps. (More specifically, each

block Â(k)|sk×si is previously compressed as UkÂ
(k)|ŝk×si during the compression

step associated with node k ∈ Vi. Due to the symmetry, (Â(k)|sk×si)
T should be

compressed at step i, and the row basis matrix Uk can be ignored. Thus, the factor
(Â(k)|ŝk×si)

T is collected into Ωi. This can be understood like in Figure 3.3 in [27]. We
skip the technical details.) Scale Ωi as Θi ≡ L−1

i Ωi. Then compute a rank-revealing
QR (RRQR) factorization

Θi ≈ Ui

( (
Â(i)|ŝi×ŝk1

· · · Â(i)|ŝi×ŝkα

)
Â(i)|ŝi×s+i

)
.

where ŝi is the row index set used to identify the second factor. Also, find an orthog-

onal matrix Qi such that QT
i Ui =

(
0
I

)
. Then set L̃i = LiQi.

The process above indicates that L̃i

(
0
I

)
= LiUi and it is an approximate

column basis matrix for Ωi. Similarly, for j = sib(i), we also obtain an approximate

column basis matrix L̃j

(
0
I

)
for Ωj . These yield

(3.18) A|si×sj ≈
(
L̃i

(
0
I

))
Bi

((
0 I

)
L̃T
j

)
= L̃i diag(0, Bi)L̃

T
j ,

where

(3.19) Bi = Â(ι)|ŝi×ŝj with ι = max{i, j}.

For a nonleaf node i with children c1 and c2, the induction process below shows

that L̃c1

(
0
I

)
and L̃c2

(
0
I

)
are approximate column basis matrices for A|sc1×(I\sc1 )

and A|sc2×(I\sc2 ), respectively, and

A|sc1×sc1
≈ L̃c1L̃

T
c1 , A|sc2×sc2

≈ L̃c2L̃
T
c2 ,(3.20)

A|sc1×sc2
≈
(
L̃c1

(
0
I

))
Bc1

((
0 I

)
L̃T
c2

)
= L̃c1 diag(0, Bc1)L̃

T
c2 , with(3.21)

Bc1 = Â(c2)|ŝc1×ŝc2
.
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It is thus clear that A|si×si is approximated as

(3.22) A|si×si ≈
(

L̃c1

L̃c2

)(
I diag(0, Bc1)

diag(0, BT
c1) I

)(
L̃T
c1

L̃T
c2

)
.

(3.21) and (3.22) precisely explain how the right-side scaling is implicitly done in the
process.

Again, with a permutation matrix Πi, the matrix in the middle on the right-

hand side of (3.22) can be assembled as Πi

(
I

Di

)
, where Di =

(
I Bc1

BT
c1 I

)
.

Compute a Cholesky factorization Di = LiL
T
i , then

(3.23) A|si×si ≈ L̂iL̂
T
i , with L̂i =

(
L̃c1

L̃c2

)
Πi

(
I

Li

)
.

At this point, we can use L̂−1
i to scale the off-diagonal block row A|si×(I\si)

associated with i and then compress. Again by induction,

(3.24) A|si×(I\si) =

(
A|sc1×(I\si)
A|sc2×(I\si)

)
=

 L̃c1

(
0
I

)
Ωi,1

L̃c2

(
0
I

)
Ωi,2

 .

where

Ωi =

(
Ωi,1

Ωi,2

)
≡

 (
(Â(c1)|ŝk1

×ŝc1
)T · · · (Â(c1)|ŝkα×ŝc1

)T Â(c1)|ŝc1×s+i

)(
(Â(c2)|ŝk1

×ŝc2
)T · · · (Â(c2)|ŝkα×ŝc2

)T Â(c2)|ŝc2×s+i

)  ,

and the notation in (3.17) is assumed. Then

L̂−1
i A|si×(I\si) = L̂−1

i diag

(
L̃c1

(
0
I

)
, L̃c2

(
0
I

))
Ωi

=

(
I

L−1
i

)
ΠT

i diag

((
0
I

)
,

(
0
I

))
Ωi

=

(
I

L−1
i

)(
0

diag(I, I)

)
Ωi =

(
0

L−1
i

)
Ωi.

Thus, we just need to compress

Θi ≡ L−1
i Ωi.

We can then perform an RRQR factorization

Θi ≈ Ui

(
Â(i)|ŝi×ŝk1

· · · Â(i)|ŝi×ŝkα
Â(i)|ŝi×s+i

)
.

Again, find an orthogonal matrix Qi such that QT
i Ui =

(
0
I

)
. Let

(3.25) L̃i ≡ L̂i

(
I

Qi

)
=

(
L̃c1

L̃c2

)
Πi

(
I

LiQi

)
.
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Then we can verify that L̃i

(
0
I

)
= L̂i

(
0
Ui

)
and

A|si×(I\si) ≈ L̃i

(
0
I

)(
Â(i)|ŝi×ŝk1

· · · Â(i)|ŝi×ŝkα
Â(i)|ŝi×s+i

)
.

This confirms the induction about the column basis matrices of the forms L̃i

(
0
I

)
.

(See, e.g., (3.21) and (3.24).) Moreover, (3.23) can be rewritten as

A|si×si ≈ L̃iL̃
T
i , with L̃i in (3.25).

This confirms the induction process in (3.20). In addition, we can extract Bi just like
in (3.19) so as to obtain an approximation like in (3.18).

The factorization process then continues until root(T ) is reached, and then we
have an approximate factorization like in (3.7). A major difference is that L̃ is now
given by the recursion (3.25), where Qi is a small matrix with size 2r (when r is the
numerical rank in the compression).

For a general dense matrix A, this scheme costs O(rN2) to compute the approx-
imate factorization. The solution procedure can be designed similarly to that at the
end of Section 3.1. With r = O(1) in preconditioning, the cost to apply the resulting
preconditioner is O(N), and the storage is O(N). This scheme shares some similar-
ities as the one in Section 3.1, but is much more sophisticated. We thus skip the
other analysis. We expect slightly reduced effectiveness, but enhanced robustness, as
confirmed by numerical tests in the next section.

Remark 3.1. In this scheme and also the one in Section 3.1, we may replace the
truncated SVDs or RRQR factorizations by other appropriate methods to improve
the efficiency. In particular, if A is a sparse matrix or a dense one that admits
fast matrix-vector multiplications, randomized construction schemes similar to those
in [18, 20, 30] can be used so that the cost to construct the preconditioner can be
reduced to roughly O(N). Relevant details will appear in [31], as this work focuses
on general SPD matrices. Here for the compression of dense blocks, either truncated
SVD or a randomized method is used, depending on the block sizes.

4. Numerical experiments. In this section, we demonstrate the performance
of the new preconditioners, which are used in the preconditioned conjugate gradi-
ent method (PCG) to solve some ill-conditioned linear systems. We compare the
effectiveness and robustness of the following preconditioners:

• bdiag: the block diagonal preconditioner;
• HSS: HSS approximation (in ULV factors [28]) based on direct off-diagonal
compression;

• NEW0: the multilevel SIF preconditioner in Section 3.1;
• NEW1: the modified multilevel SIF preconditioner in Section 3.3.

For convenience, the following notation is used in the discussions:
• r: the numerical rank bound used in off-diagonal compression;

• Aprec: the preconditioned matrix (e.g., L̃−1AL̃−T when a preconditioner L̃L̃
T

is used; for some cases where HSS loses positive definiteness, factors from
nonsymmetric HSS factorizations are used);

• γ = ∥Ax−b∥2

∥b∥2
: the relative residual, where b is generated with the vector of all

ones as the exact solution;
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• Nit: the number of iterations to reach a given accuracy.
Several ill-conditioned matrices are tested. Since our studies are concerned with

general SPD matrices, all the test matrices are treated as dense ones, and we do not
take advantage of possible special structures within some examples.

In all the tests, we keep the numerical rank bound r very small, so that the costs of
applying our preconditioners (by substitution) are nearly linear in N . Such costs are
almost negligible as compared with dense matrix-vector multiplication costs. Thus, it
is important to reduce the number of iterations in PCG. For consistency, the diagonal
block sizes of bdiag and also the finest level diagonal block sizes of HSS, NEW0, and
NEW1 are all set to be r.

Example 1. Consider a matrix A with entries

Aij =
(ij)1/4π

16 + (i− j)2
.

The matrix can be known to be SPD and ill conditioned based on a result in [24].

We test different matrix sizes N , but fix r = 5 when generating the precon-
ditioners. PCG with the four preconditioners is used to reach the relative accuracy
γ ≤ 10−12. The tests are in Matlab and run on an Intel Xeon-E5 processor with 64GB
memory. Table 4.1 shows the results. We report the condition numbers before and
after preconditioning, the numbers of iterations Nit, and the relative residuals γ. For
all the tests, NEW0 and NEW1 remain SPD, although r is very small. However, HSS
fails to preserve the positive definiteness. Thus, a nonsymmetric HSS factorization is
used in the solution.

NEW0 and NEW1 significantly reduce the condition numbers and lead to much
faster convergence than bdiag and HSS. HSS gives reasonable reduction in the con-
dition numbers, but the numbers of iterations are higher. The performance can also
be observed from Figure 4.1(a), which shows the actual convergence behaviors for
N = 3200. The fast convergence with the new preconditioners can also be confirmed
by the eigenvalue distribution of Aprec. See Figure 4.1(b), where the eigenvalues of
Aprec with NEW0 or NEW1 closely cluster around 1. It is not the case for bdiag or
HSS.
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(a) Convergence of PCG (b) λ(A) and λ(Aprec)

Fig. 4.1. Example 1. Convergence of PCG with the preconditioners for the matrix with N =
3200, and the eigenvalues before and after preconditioning.

In addition, NEW0 fully respects the scaling-and-compression strategy and is the
most effective. NEW1 needs less memory than NEW0 (O(N) vs. O(N logN)). See
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Table 4.1
Example 1. Performance of the preconditioners in PCG. (The condition numbers are not

evaluated for N = 25, 600 and 51, 200 since it is too slow to form Aprec.)

N 1600 3200 6400 12, 800 25, 600 51, 200

κ(A) 1.48e6 2.14e6 3.06e6 4.38e6

κ(Aprec)

bdiag 6.18e3 6.20e3 6.21e3 6.22e3

HSS 4.89e2 4.89e2 4.81e2 4.76e2

NEW0 1.30 1.31 1.31 1.32

NEW1 2.05 2.05 2.05 2.05

Nit

bdiag 213 207 209 198 197 185

HSS 119 123 125 125 124 123

NEW0 9 9 8 8 8 8

NEW1 15 15 15 15 15 15

γ

bdiag 8.10e−13 7.56e−13 6.60e−13 9.76e−13 8.83e−13 8.90e−13

HSS 8.78e−13 9.54e−13 7.83e−13 4.82e−13 9.69e−13 8.55e−13

NEW0 6.89e−14 8.34e−14 8.85e−13 6.76e−13 5.43e−13 4.40e−13

NEW1 5.18e−13 4.61e−13 3.82e−13 3.36e−13 3.46e−13 8.68e−13

bdiag 3

Positive HSS 7

definiteness NEW0 3

NEW1 3

Figure 4.2(a). The storage of HSS is nearly the same as that of NEW1 and is not
shown.

We also report the runtime to construct the two new preconditioners and to apply
them (to one vector) in Figure 4.2(b). The construction of HSS is about 3 times faster
than that of NEW1, and the application of HSS has runtime close to that of NEW1.
However, the iteration time of PCG with HSS is much longer due to the larger number
of iterations. The iteration time of PCG with bdiag is also quite larger than with the
new preconditioners. (The construction and application of bdiag are more efficient
in Matlab due to the simple block diagonal structure, while the new preconditioners
involve more sophisticated structured matrix operations such as the application of lots
of local Householder matrices. Thus, the advantage of the new preconditioners (as
compared with bdiag) in iteration time is not as large as the advantage in the numbers
of iterations. In practice, the reduction of the number of iterations is essential, since
each dense matrix-vector multiplication costs O(N2), while each application of these
preconditioners costs only about O(N).)

Example 2. Then consider some interpolation matrices A for the following radial
basis functions (RBFs) of t:

f1(t, µ) = e−µ2t2 , f2(t, µ) =
1√

µ2t2 + 1
, f3(t, µ) = sechµt,

where µ is the shape parameter. For convenience, choose t to be between 0 and
N−1. It is well known that the RBF matrices are very ill conditioned for small shape
parameters. For some cases, the condition numbers are nearly exponential in 1

µ or 1
µ2

(see, e.g., [4]).
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Fig. 4.2. Example 1. Storage for NEW0 and NEW1 and the runtime to construct them and to
apply them to one vector.

We test several matrices with different parameters µ. The matrix sizes are set
to be N = 1000. (Similar results are observed for other sizes.) We fix r = 7 when
generating the preconditioners. See Table 4.2 for the results. PCG with NEW0 or
NEW1 converges quickly, and NEW0 is the most effective. On the other hand, NEW1
remains positive definite for all the test cases, while NEW0 loses positive definiteness
for one case (indicated by “almost” in Table 4.2). In that case, two small intermediate
reduced matrices in the construction of the preconditioner become indefinite. A very
small diagonal shift is added to make these reduced matrices positive definite. In
addition, HSS again becomes indefinite for all the tests.

Table 4.2
Example 2. Performance of the preconditioners in PCG.

RBF e−ϵ2t2 sech ϵt 1√
ϵ2x2+1

ϵ 0.4 0.34 0.3 0.2 0.3 0.2

κ(A) 2.49e6 9.30e8 3.48e6 1.30e10 2.52e5 5.36e7

κ(Aprec)

bdiag 8.83e4 2.75e7 8.02e4 3.18e8 6.51e3 1.20e6

HSS 1.60e1 5.42e4 2.94e1 2.79e4 6.23e1 7.50e4

NEW0 1.00 1.00 1.00 1.15 1.02 4.17e1

NEW1 1.88 2.33e3 1.27 5.77e3 1.51 1.48e2

Nit

bdiag 456 1973 299 2738 146 587

HSS 53 332 39 342 38 1028

NEW0 3 3 2 5 4 13

NEW1 13 105 8 79 11 78

γ

bdiag 6.67e−13 9.99e−13 9.43e−13 9.36e−13 4.57e−13 7.83e−13

HSS 8.63e−13 8.03e−13 7.42e−13 5.27e−13 2.70e−13 8.70e−13

NEW0 2.49e−16 5.46e−14 2.93e−13 1.14e−13 2.77e−13 2.41e−14

NEW1 3.82e−13 5.15e−13 8.05e−13 6.98e−13 4.69e−13 7.02e−13

bdiag 3

Positive HSS 7

definiteness NEW0 3 3 3 3 3 Almost

NEW1 3
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Figure 4.3 also shows the actual convergence and eigenvalue distributions for one
matrix. The new preconditioners yield much faster convergence and better eigenvalue
clustering.
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Fig. 4.3. Example 2. Convergence of PCG with the preconditioners for the matrix correspond-
ing to sechµt, µ = 0.2 in Table 4.2, and the eigenvalues before and after preconditioning.

Example 3. We further test some highly ill-conditioned matrices from different
applications, for which NEW1 still demonstrates superior robustness and also leads to
much faster convergence than HSS.

• LinProg (N = 2301, κ(A) = 2.09e11)
A matrix of the form CΛCT as used in some linear programming problems,
where C is a rectangular matrix nemspmm2 from the linear programming test
matrix set Meszaros in [7], and Λ is a diagonal matrix with diagonal entries
even spaced between 10−5 and 1. We set r = 9.

• MaxwSchur (N = 3947, κ(A) = 4.78e9)
A dense normal matrix in [29] constructed based on a Schur complement in
the direct factorization of a discretized 3D Maxwell equation. We set r = 20.

• BC25Schur (N = 1826, κ(A) = 3.28e11)
A dense intermediate Schur complement in the multifrontal factorization [8] of
the BCS structural engineering matrix BCSSTK25 from the Harwell-Boeing
Collection [21]. We set r = 7.

• BCSSTK13 (N = 2003, κ(A) = 1.10e10)
The matrix BCSSTK13 (directly treated as dense) from the Harwell-Boeing
Collection [21]. We set r = 10.

For each matrix, NEW1 remains positive definite, while HSS loses the positive
definiteness. The convergence of PCG with NEW1 is also faster, as shown in Figure
4.4. In Table 4.3, we also show the convergence results for one matrix with different
compression rank bounds r. A larger rank bound r leads to better convergence, but
the preconditioner construction and application cost more.

5. Conclusions. We have presented the SIF framework and its analysis for
preconditioning general SPD matrices. The SIF techniques include the scaling-and-
compression strategy and the ULV factorization. A prototype preconditioner is used
to illustrate the basic ideas and fundamental analysis. Generalizations to practical
multilevel schemes are then made and also analyzed. Systematic analysis for the
robustness, accuracy control, and effectiveness of the preconditioners is given.
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Fig. 4.4. Example 3. Convergence of PCG with the preconditioners NEW1 and HSS.

Table 4.3
Example 3. Performance of NEW1 and HSS as the preconditioners in PCG for the matrix

LinProg, where different compression rank bounds r are used to construct the preconditioners.

r 3 6 9 12

Nit
HSS 2165 1499 1331 1147

NEW1 598 378 313 282

γ
HSS 7.39e− 13 8.99e− 13 7.91e− 13 9.56e− 13

NEW1 9.58e− 13 7.74e− 13 9.80e− 13 9.03e− 13

Our discussions mainly focus on general dense SPD matrices, though the tech-
niques are also applicable to sparse ones and some special dense ones (see Remark
3.1). The techniques in this paper can also be applied to dense Schur complements
in sparse preconditioning. Such work will appear in [31]. We also expect to pro-
duce efficient black-box implementations of the preconditioners. Similar techniques
for the preconditioning of more general matrices such as indefinite ones are under
development.
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