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Abstract

We consider approximations on SO(3) by Wigner D-matrix. We establish basic ap-
proximation properties of Wigner D-matrix, develop efficient numerical schemes using
Wigner D-matrix for elliptic and parabolic equations on SO(3), and establish correspond-
ing optimal error estimates. Numerical examples are presented to validate the theoretical
estimates and illustrate a physical application.

keywords. Wigner D-matrix, SO(3), error estimate, spectral-Galerkin, polymers

AMS subject classifications. 41A30, 65N35, 65M70

1 Introduction

In most problems relevant to three-dimensional rotations, we need to express functions
in the rotational group SO(3). Because Wigner D-matrix is an irreducible representation
of SO(3), it is naturally used to expand functions in SO(3), similar to Fourier expansion
for periodic functions or spherical harmonic expansion for functions in spherical domains.
Although originally introduced in group representation and quantum mechanics [22, 20, 24],
Wigner D-matrix has now been applied to various areas [3], including image searching and
analysis [6], cosmology [21], molecular biology [11], polymeric and liquid crystalline materi-
als [23, 18, 19, 17]. The development of fast transformation between the physical and the
frequency space [10] has brought great convenience to its applications.

When solving PDEs on SO(3), Wigner D-matrix is often used as basis functions in a
spectral-Galerkin approach. However, error estimates for such approach involving Wigner
D-matrix is not yet available. The main purposes of this paper are (i) to derive a basic
approximation theory for Wigner D-matrix; (ii) to derive an efficient spectral-Galerkin al-
gorithm using Wigner D-matrix and the corresponding error estimates for solving elliptic
and parabolic type equations on SO(3); and (iii) to illustrate how to use spectral-Galerkin
algorithm with Wigner D-matrix to simulate a worm-like chain on the spherical surface.

It is known that the accuracy of the spectral-Galerkin solution is controlled by the ap-
proximation properties of the basis functions. Analysis of this kind has been done for Fourier
series and orthogonal polynomials [12, 2, 8, 9, 16]. The key property in the proof of approx-
imation results is a derivative relation similar to that satisfied by the Jacobi polynomials.
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Such a derivative relation played a key role in the error estimate of Jacobi polynomials [9, 16].
With the approximation results in hand, we then consider using Wigner D-matrix to solve
elliptical and parabolic equations on SO(3).

As an application, we focus on a model of polymers, where the chain propagator equation
needs to be solved. The chain propagator equation is crucial for the computation of the single
chain partition function [5]. The form of chain propagator equation is identical to Schrödinger
equation except without the unit i~. The space of variables depends on the symmetry of the
monomers/building blocks. If they do not have spherical or axial symmetry, the differential
equations are necessarily on SO(3). The space of variables also depends on the geometry of
the region in which the molecule is confined. An example is worm-like molecules on spherical
surface [14], where the chain propagator equation is also on SO(3). Other applications we
plan to consider in a future work is the Smoluchowski equation which describes the evolution
of density function for liquid crystals [4].

The rest of paper is organized as follows. In Sec. 2, we introduce the notations in SO(3),
the definition and some important relations of Wigner D-matrix. Sec. 3 is dedicated to the
error estimate for approximation by Wigner D-matrix. Applications to elliptic and parabolic
equations are presented in Sec. 4 where we propose efficient algorithms and derive optimal
error estimates. Numerical examples are presented in Sec. 5 to validate the theoretical results
and illustrate physical applications. A brief concluding remark is given in Sec. 6.

2 Wigner D-matrix

2.1 The elements of SO(3)

We choose a reference orthonormal frame (e1, e2, e3) in R3. Each orthonormal frame
(m1,m2,m3) can be expressed by rotating (e1, e2, e3) with P ∈ SO(3), namely PP T = 1,
|P | = 1 and

(m1,m2,m3) = (e1, e2, e3)P.

The elements of P ,

P =

 m11 m21 m31

m12 m22 m32

m13 m23 m33


are given by

mjk = mj · ek.
In the above description, P is determined by mj . We may also view mj as functions of P .

The elements in SO(3) can be expressed by Euler angles α, β, γ:

P (α, β, γ)

=

 cosβ − sinβ cos γ sinβ sin γ
sinβ cosα cosβ cosα cos γ − sinα sin γ − cosβ cosα sin γ − sinα cos γ
sinβ sinα cosβ sinα cos γ + cosα sin γ − cosβ sinα sin γ + cosα cos γ

 ,

(2.1)

where
β ∈ [0, π], α, γ ∈ [0, 2π).
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The uniform unit measure in SO(3) is given by

dν =
1

8π2
sinβ dα dβ dγ.

2.2 Differential operators

In the tangential space at P , denoted by TSO(3)(P ), we choose an orthonormal basis
(X1, X2, X3). For any differentiable function f , the directional derivatives can be calculated
by

d

dt
f(P (t)) =

3∑
i=1

∂Xif · (Xi,
dP

dt
).

Note that PP T = P TP = I. Thus we have

dP

dt
P T + P

dP T

dt
=

dP T

dt
P + P T

dP

dt
= 0.

So we can find skew-symmetric matrices Al, Ar such that dP/dt = AlP = PAr. Hence
(S1P, S2P, S3P ) and (PS1, PS2, PS3) are two orthonormal basis of TSO(3)(P ), where

S1 =

 0 0 0
0 0 −1
0 1 0

 , S2 =

 0 0 1
0 0 0
−1 0 0

 , S3 =

 0 −1 0
1 0 0
0 0 0

 . (2.2)

When we choose Xk = SkP , we denote Jk = ∂Xk
; when we choose X ′k = PSk, we denote

Lk = ∂X′k . Intuitively, Jk represents the derivative of the infinitesimal rotation about ek, and
Lk represents the derivative of the infinitesimal rotation about mk. We can also write

Jkf(P ) = lim
t→0

f(exp(tSk)P )− f(P )

t
, Lkf(P ) = lim

t→0

f(P exp(tSk))− f(P )

t
. (2.3)

By computing the derivatives of P about Euler angles, we can write Jk and Lk by Euler
angles:

J1 =
∂

∂α
, (2.4)

J2 =
cosα

sinβ

(
∂

∂γ
− cosβ

∂

∂α

)
− sinα

∂

∂β
, (2.5)

J3 =
sinα

sinβ

(
∂

∂γ
− cosβ

∂

∂α

)
+ cosα

∂

∂β
, (2.6)

L1 =
∂

∂γ
, (2.7)

L2 =
− cos γ

sinβ

(
∂

∂α
− cosβ

∂

∂γ

)
+ sin γ

∂

∂β
, (2.8)

L3 =
sin γ

sinβ

(
∂

∂α
− cosβ

∂

∂γ

)
+ cos γ

∂

∂β
. (2.9)

Using (2.4)-(2.9), we can verify the following properties. First, we have

J2
1 + J2

2 + J2
3 = L2

1 + L2
2 + L2

3 , L2 = J2. (2.10)
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Second, the operators satisfy

[Jk1 , Jk2 ] = Jk1Jk2 − Jk2Jk1 = −εk1k2k3Jk3 , [Lk1 , Lk2 ] = εk1k2k3Lk3 , (2.11)

where

εk1k2k3 =


1, (k1k2k3) = (123), (231), (312),
−1, (k1k2k3) = (132), (213), (321),
0, otherwise.

Thus we can verify that
[L2, Jk] = [L2, Lk] = [Jk1 , Lk2 ] = 0.

The derivatives of mij are given by

Jk1mlk2 = εk1k2k3mlk3 , Lk1mk2l = εk1k2k3mk3l. (2.12)

The operators satisfy the equation of integration by parts in SO(3),∫
dνf(Jkg) = −

∫
dν(Jkf)g,

∫
dνf(Lkg) = −

∫
dν(Lkf)g. (2.13)

2.3 Wigner D-matrix

By (2.13), the operators iJk and iLk are symmetric on L2(SO(3)), where i =
√
−1 is

the imaginary unit. Also −L2, iJ1, iL1 are mutually commutative, so we may consider their
common eigenfunctions,

−L2φ = λφ, iJ1φ = mφ, iL1φ = m′φ. (2.14)

By solving the eigenfunction problem, we obtain that λ = j(j+1), j ≥ |m|, |m′|, j,m,m′ ∈ Z,
and the corresponding eigenfunction gives the Wigner D-matrix,

Dj
mm′ = exp(−imα)djmm′(β) exp(−im′γ), (2.15)

where

djmm′(β) = (−1)ν
(

2j − k
k + a

)1/2(k + b

b

)−1/2(
sin

β

2

)a(
cos

β

2

)b
P

(a,b)
k (cosβ).

In the above, k = j −max(|m|, |m′|), a = |m−m′|, b = |m+m′|,

ν =

{
0, if m′ ≤ m,
m′ −m, if m′ > m,

and

P
(a,b)
k (x) =

∑
s

(
k + a

s

)(
k + b

k − s

)(
x− 1

2

)n−s(x+ 1

2

)s
is the Jacobi polynomial. Whenm′ = 0, the Wigner-D matrix becomes the spherical harmonic
functions, i.e.,

Dj
m0 = Y j

m,

where Y j
m are the spherical harmonic functions. By the theory of group representation [20],

we have
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Proposition 2.1. Dj
mm′ is a complete orthogonal basis of L2(SO(3)).

In fact, the orthogonality can also be verified directly by that of Jacobi polynomials. If
m1 6= m2 or m′1 6= m′2, it is obvious that Dj1

m1m′1
and Dj2

m2m′2
are orthogonal. And we have∫

dν Dj1
mm′D

j2∗
mm′ = C

∫ 1

−1
dx (1− x)a(1 + x)bP

(a,b)
k1

(x)P
(a,b)
k2

(x) = Cδj1j2 .

The Wigner D-matrix also satisfies the following differential relations: define L± = iL2∓
L3, J± = iJ2 ± J3, then

L±D
j
mm′ =

√
j(j + 1)−m′(m′ ± 1)Dj

m,m′±1, (2.16)

J±D
j
mm′ =

√
j(j + 1)−m(m± 1)Dj

m±1,m′ . (2.17)

The relations (2.14), (2.16) and (2.17) are crucial in the error estimate.

3 Approximation error by Wigner-D matrix

We shall only consider the operator Lk, since Jk can be studied in exactly the same
manner.

We define the Hp space on SO(3) by

Hp(SO(3)) = {f(P ) : Lj1 . . . Ljpf ∈ L2(SO(3))}, (3.1)

with the semi-norm and norm

|f |2p =
∑

jr=1,2,3

|Lj1 . . . Ljpf |2, ||f ||2p =
∑
k≤p
|f |2p. (3.2)

Denote ||f || = ||f ||0.
Since {Dj

mm′} is a complete orthogonal basis, for f(P ) ∈ L2(SO(3)), we may write

f(P ) =
∑

0≤|m|,|m′|≤j

f̂ jmm′D
j
mm′ .

If f ∈ H1, by (2.14) and (2.16), we have

3∑
r=1

||Lrf ||2 =
∑

0≤|m|,|m′|≤j

j(j + 1)|f̂ jmm′ |2.

Recall that L2 is defined in (2.10). Thus, for f ∈ H2k,

||(L2)kf ||2 =
∑

0≤|m|,|m′|≤j

(j(j + 1))2k|f̂ jmm′ |2, (3.3)

and for f ∈ H2k+1,

3∑
r=1

||Lr(L2)kf ||2 =
∑

0≤|m|,|m′|≤j

(j(j + 1))2k+1|f̂ jmm′ |2. (3.4)
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Next we estimate the derivatives Lj1 . . . Ljpf . We can write

L2
+f =

∑
0≤|m+1|,|m′|≤j

√
[j(j + 1)−m(m+ 1)][j(j + 1)− (m+ 1)(m+ 2)]f̂ jmm′D

j
m+2,m′ .

Therefore,

||L2
+f ||2 ≤

∑
0≤|m+1|,|m′|≤j

(j(j + 1))2|f̂ jmm′ |2 ≤ ||L2f ||2.

Similarly, we can derive ||Ls1Ls2f || ≤ ||L2f || for s1, s2 ∈ {1,+,−}. Thus, for jr ∈ {1, 2, 3},
we have

||Lj1 . . . Ljpf ||2 ≤ C(p)
∑

0≤|m|,|m′|≤j

(j(j + 1))p|f̂ jmm′ |2, (3.5)

where C(p) = 2p.
Denote

XN = span{Dj
mm′ : j ≤ N}. (3.6)

Define the projection operator πN as

(πNf − f, g) = 0, ∀g ∈ XN . (3.7)

Then πN can be written as

πNf =
∑

0≤|m|,|m′|≤j≤N

f̂ jmm′D
j
mm′ . (3.8)

Now we can reach an error estimate of the πN .

Theorem 3.1. For any f ∈ Hp(SO(3)) and k ≤ p ≤ N ,

||Lj1 . . . Ljk(πNf − f)|| ≤ CNk−p|f |p. (3.9)

Proof. Using (3.5), (3.3), and (3.4), we have

||Lj1 . . . Ljk(πNf − f)||2 ≤C
∑

j>N,0≤|m|,|m′|≤j

(j(j + 1))2k|f̂ jmm′ |2

≤ C

(N(N + 1))2p−2k

∑
j>N,0≤|m|,|m′|≤j

(j(j + 1))2p|f̂ jmm′ |2

≤CN2k−2p|f |2p.

4 Applications

We shall consider two problems in this section: one is an elliptic equation and the other
is a parabolic equation.
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4.1 Elliptic equation

Consider
−LiAijLju+ biLiu+ cu = f, (4.1)

with Aij(P ), bi(P ), c(P ) ∈ L∞(SO(3)), f(P ) = L2(SO(3)), and the conventional notation
about repeated indices is used. We also assume that the matrix(

Aij bi
bj c

)
is symmetric positive definite at each P ∈ SO(3), with the minimal eigenvalue ≥ λ > 0.
Under this assumption, the bilinear form

a(u, v) =

∫
(AijLivLju+ bivLiu+ cuv)dν (4.2)

is continuous and coercive about the H1 norm in SO(3), namely,

a(u, v) ≤ C‖u‖1‖v‖1, ∀u, v ∈ H1;

λ‖u‖1 ≤ a(u, u), ∀u ∈ H1.
(4.3)

The weak form of the equation is to find u ∈ H1(SO(3)) such that

a(u, v) = (f, v), ∀v ∈ H1(SO(3)). (4.4)

By the Lax-Milgram lemma, there exists a unique solution for the above problem.

4.1.1 Regularity

We first establish a regularity result for (4.4).
The following two lemmas are similar to the elliptical equations in Rn. The difference

quotient has the following estimate.

Lemma 4.1. Let Lhkf(P ) = [f(P exp(hSk))− f(P )]/h, where Sk are given in (2.2).

A. Assume 1 ≤ p ≤ ∞ and f ∈W 1,p. Then

||Lhkf ||Lp ≤ C||Lkf ||Lp . (4.5)

B. Assume 1 < p ≤ ∞, f ∈ Lp, and there exists a constant C such that ||Lhkf ||LP ≤ C for
all h and k = 1, 2, 3. Then f ∈W 1,p, and

||Lkf ||Lp ≤ C, k = 1, 2, 3. (4.6)

Proof. A. If f ∈W 1,p, then for every P ∈ SO(3),

f(P exp(hSk))− f(P ) = h

∫ 1

0
dtLkf(P exp(thSk)).

Therefore ∫
dν|Lhkf |p ≤ C

∫
dν

∫ 1

0
dt|Lkf(P exp(thSk))|p

≤ C||Lkf ||LP .
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B. Let φ ∈ C∞. We have ∫
dνfLhkφ = −

∫
dνLhkfφ.

Note that Lhk is bounded in Lp. Thus we can choose a subsequence such that Lhlk f ⇀ g
weakly in Lp. Then∫

dνfLkφ = lim
l→∞

∫
dνfLhlk φ = − lim

l→∞

∫
dνLhlk fφ = −

∫
dνgφ,

indicating that g = Lkf in Lp. Hence we deduce that f ∈W 1,p.

Lemma 4.2. Assume Aij , bi ∈ W 1,∞ and c ∈ L∞. Let u be the solution of (4.4) with
f = g ∈ L2, then u ∈ H2 and

||u||2 ≤ C||g||0. (4.7)

Here the constant C depends on ||Aij ||W 1,∞ , ||bi||W 1,∞ , ||c||L∞.

Proof. Substituting v with L−hk v in (4.4), we obtain∫
dνAijLiuLjL

−h
k v =

∫
dν(g − (c− Libi)u+ biLiu)L−hk v. (4.8)

From (2.3), we can deduce that

(LjL
h
k − LhkLj)v = εjkl

sinh

h
Llv(P exp(hS2))−

1− cosh

h
Ljv(P exp(hS2)).

Take (j, k) = (1, 2) for example. Denote R(t, h) = exp(−hS2) exp(tS1) exp(hS2). Then we
have

lim
t→0

1

t
(R(t, h)− I) = lim

t→0

1

t

 cos2 h+ sin2 h cos t− 1 − sinh sin t cosh sinh(1− cos t)
sinh sin t cos t− 1 − cosh sin t

cosh sinh(1− cos t) cosh sin t cos2 h cos t+ sin2 h− 1


=

 0 − sinh 0
sinh 0 − cosh

0 cosh 0


= S3 sinh+ S1 cosh.

Hence,

h(L1L
h
2 − Lh2L1)v = lim

t→0

1

t
[v(P exp(tS1) exp(hS2))− v(P exp(hS2) exp(tS1))]

= lim
t→0

1

t
[v(P exp(hS2)R(t, h))− v(P exp(hS2))]

− lim
t→0

1

t
[v(P exp(hS2) exp(tS1))− v(P exp(hS2))]

= sinhL3v(P exp(hS2))− (1− cosh)L1v(P exp(hS2)).
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The left side of (4.8) can be rewritten as∫
dνAijLiuLjL

−h
k v

=

∫
dνAijLiu

[
L−hk Ljv + εjkl

sinh

h
Llv(P exp(−hSk)) +

1− cosh

h
Ljv(P exp(−hSk))

]
=

∫
dν − Lhk(AijLiu)Ljv

+AijLiu
[
εjkl

sinh

h
Llv(P exp(−hSk)) +

1− cosh

h
Ljv(P exp(−hSk))

]
=

∫
dν −Aij(P exp(hS1))L

h
kLiuLjv − LhkAijLiuLjv

+AijLiu
[
εjkl

sinh

h
Llv(P exp(−hSk)) +

1− cosh

h
Ljv(P exp(−hSk))

]
.

Thus ∫
dνAij(P exp(hS1))L

h
kLiuLjv

=

∫
dν − LhkAijLiuLjv − (g − (c+ Libi)u− biLiu)L−hk v

+AijLiu
[
εjkl

sinh

h
Llv(P exp(−hSk)) +

1− cosh

h
Ljv(P exp(−hSk))

]
≤C1(||u||1 + ||g||0)||Lv||0.

Then we substitute v with Lhku in the above, which yields

λ||LhkLu||20 ≤
∫

dνAij(P exp(hS1))L
h
kLiuL

h
kLju

=

∫
dνAij(P exp(hS1))L

h
kLiu

[
LjL

h
ku

− εjkl
sinh

h
Llu(P exp(hSk)) +

1− cosh

h
Lju(P exp(hSk))

]
≤C1(||u||1 + ||g||0)||LLhku||0 + C2||u||1||LhkLu||0
≤C1(||u||1 + ||g||0)(||LhkLu||0 + C3||u||1) + C2||u||1||LhkLu||0
≤C4(||u||1 + ||g||0)(||LhkLu||0 + 1).

Hence ||LhkLu||0 ≤ C5(||u||1 + ||g||0) with C5 = C4/2λ +
√

(C4/2λ)2 + C4/λ, which implies
u ∈ H2 and

||u||2 ≤ C5(||u||1 + ||g||0).
Finally, we have λ||u||21 ≤ a(u, u) = (u, g) ≤ ||u||0||g||0. Therefore ||u||1 ≤ (1/λ)||g||0 and
(4.7) holds.

Corollary 4.3. Assume Aij , bi ∈ W k+1,∞ and c ∈ W k,∞. If u is the solution of (4.4) with
f = g ∈ Hk, then u ∈ Hk+2 and

||u||k+2 ≤ C||g||k. (4.9)
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Proof. We prove by induction. Suppose (4.9) holds for 0, . . . , k − 1. Then u ∈ Hk+1 and
||u||k+1 ≤ C||g||k−1. Since the coefficients and the right-hand term have better smoothness,
we can take derivatives on both sides of the equation,

Lp1 . . . Lpk(LiAijLju+ biLiu+ cu) = Lp1 . . . Lpkg.

Denote u′ = Lp1 . . . Lpku. By using (2.11), we can rewrite the above equation as

LiAijLju
′ + biLiu

′ + cu′ = g′.

where g′ ∈ L2 and

||g′|| ≤ C(||u||k+1 + ||g||k) ≤ C(||g||k−1 + ||g||k) ≤ C||g||k.

By Lemma 4.2, u′ ∈ H2 and ||u′||2 ≤ C||g′|| ≤ C||g||k. Since pk are arbitrary, we have
||u||k+2 ≤ C||g||k.

4.1.2 Error estimate

The spectral-Galerkin method for (4.4) is: Find uN ∈ XN such that

a(uN , vN ) = (f, vN ), ∀vN ∈ XN . (4.10)

Again the wellposedness of the above problem is assured by the Lax-Milgram lemma. As for
the error estimate, we have

Theorem 4.4. Assume Aij , bi ∈ W k+1,∞, c ∈ W k,∞ and f ∈ Hk, where k is a nonnegative
integer. If u is the solution of (4.4) and uN is that of (4.10), then

||u− uN ||ν ≤ CNν−k−2||f ||k, ∀ν ∈ [0, 1]. (4.11)

Proof. We first show the result with ν = 1. We derive from (4.4) and (4.10) that

a(u− uN , vN ) = 0, ∀vN ∈ XN .

By (4.3) and Cea’s lemma, we immediately derive

||u− uN ||1 ≤ C inf
vN∈XN

||u− vN ||1.

Define the projection operator π1N as

(π1Nu− u, vN ) + (Lj(π
1
Nu− u), LjvN ) = 0, ∀vN ∈ XN . (4.12)

It can be verified by (3.8), (2.14) and (2.16) that the above equality holds when substituting
π1Nu with πNu, thus π1N = πN . Therefore, if u ∈ Hm(SO(3)), we have

inf
vN∈XN

||u− vN ||1 ≤ ||u− πNu||1 ≤ CN1−m|u|m. (4.13)

Hence, we obtain the result for ν = 1 by combining the above and the regularity result in
Corollary 4.3.
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Next, we prove the result for ν = 0 using a standard duality argument. We write

||u− uN ||0 =
sup(u− uN , g)

||g||0
.

Denote by ϕg the solution of a(v, ϕg) = (v, g), ∀v. Let v = u − uN . Combined with
a(u− uN , πNϕg) = 0, (3.9), and (4.7), we obtain

(u− uN , g) =a(u− uN , ϕg − πNϕg)
≤C||u− uN ||1||ϕg − πNϕg||1
≤CN−1||u− uN ||1||ϕg||2
≤CN−1||u− uN ||1||g||0.

Thus by (4.13) and (4.9),

||u− uN ||0 ≤ CN−1||u− uN ||1 ≤ CN−k−2|u|k+2 ≤ CN−k−2||f ||k. (4.14)

Finally, the result for ν ∈ (0, 1) can be obtained by a standard space interpolation [1].

4.1.3 Implementation

Here we discuss how to solve (4.10) numerically. Write

uN =
∑

|m|,|m′|≤j≤N

ûjmm′D
j
mm′ .

1. If the coefficients Akl, bk, c are constant, it follows from (2.14) and (2.16) that

(AklLkuN , LlD
j
mm′) + (bkLkuN , D

j
mm′) + (cuN , D

j
mm′) (4.15)

is depends linearly on ûjmm′ , û
j
m,m′±1, û

j
m,m′±2. Thus we group ûjmm′ according to

the indices j and m. For fixed (j,m), we can solve ûjmm′ from a pentadiagonal linear
equations with 2j + 1 variables,

(M j
m)m′p′ û

j
mp′ = f̂ jmm′ , −j ≤ |m′|, |p′| ≤ j,

which can be done by LU factorization. Denote

C±(j,m′) =
√
j(j + 1)−m′(m′ ± 1).

Then the nonzero elements in the matrix M j
m can be computed by (2.14) and (2.16),

given as follows (where i =
√
−1),

(M j
m)m′m′ =A11m

′2 +
1

2
(A22 +A33)(j(j + 1)−m′2) + ib1m

′ + c,

(M j
m)m′,m′±1 =

1

2
C±(j,m′)[(2m′ ± 1)(−A12 ± iA13) + (ib2 ± b3)],

(M j
m)m′,m′±2 =

1

4
(A22 −A33 ∓ 2iA23)C±(j,m′)C±(j,m′ ± 1).
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2. Generally, Akl, bk, c are not constant. In this case, we first notice that (4.15) can be
computed efficiently from ûjmm′ with the help of transformation between physical and
frequency space. We will use the SOFT package1 in this work, where the computational
cost is O(N4). Thus, to solve (4.10), we may use conjugate gradient method if bk = 0,
and BiCGSTAB or GMRES method for general cases. Furthermore, we may choose
constant coefficients Akl, bk, c, and use the matrix generated by them as a preconditioner
for the above methods.

4.2 Parabolic equation

We consider the following parabolic type equation

ut − LiAijLju+ biLiu+ f(u) = g(P, t), (4.16)

where Aij , bi are constant, A is symmetric and non-negative, and |f(x) − f(y)| ≤ K|x − y|.
For examples, the propagator equation of a worm-like chain on the sphere, as well as the
helical worm-like chain, can be written in this form, with f(u) = W (P )u.

As an example, we consider the second-order leapfrog scheme in time:
Let u1N be computed by using a first-order scheme. For n ≤ 1, we find un+1

N ∈ XN such that

1

2τ
(un+1
N − un−1N , φN ) +Aij

(
Lj

(
un+1
N + un−1N

2

)
, LiφN

)

+

(
biLi

(
un+1
N + un−1N

2

)
, φN

)
+ (f(unN ), φN ) = (g(tn), φN ), ∀φN ∈ XN . (4.17)

At each time step, one needs to solve an elliptic equation of the kind (4.10) for un+1
N .

We will use the following discrete Gronwall’s inequality (see [15]):

Lemma 4.5. Suppose A ≥ 0, and φn, kn, gn are nonnegative sequences satisfying

φn ≤ A+
n−1∑
j=0

(kjφj + gj), n ≥ 0.

Then

φn ≤ exp(

n−1∑
j=0

kj)(A+

n∑
j=1

gj), n ≥ 0.

Theorem 4.6. Let u and un+1
N be the solutions for (4.16) and (4.17), respectively. Then, we

have

||u(tn+1)− un+1
N || ≤ exp(C4T )

(
τ2(||utt||H1(0,T ;L2) + ||uttt||L2(0,T ;L2)) +N−m||u||C(0,T ;Hm)

)
,

(4.18)

where C4 ∼ (1− τ(1 +K2))−1.

1www.cs.dartmouth.edu/∼geelong/soft/
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Proof. We have

1

2τ
(ẽn+1
N − ẽn−1N , φN ) +Aij

(
Lj

(
ẽn+1
N + ẽn−1N

2

)
, LiφN

)

+

(
biLi

(
ẽn+1
N + ẽn−1N

2

)
, φN

)
+ (f(u(tn), φN )− f(unN )) = (Tn, φN ).

Let φN = 2τ(ẽn+1
N + ẽn−1N ), then we have

||ẽn+1
N ||2 − ||ẽn−1N ||2 +

τ

2
Aij(Li(ẽ

n+1
N + ẽn−1N ), Lj(ẽ

n+1
N + ẽn−1N ))

+ 2τ(f(u(tn))− f(unN ), ẽn+1
N + ẽn−1N ) = 2τ(Tn1 + Tn2 + Tn3 , ẽ

n+1
N + ẽn−1N ).

Now the local truncation errors are given as follows,

Tn1 =
1

2τ
(u(tn+1)− u(tn−1))− ut(tn) =

1

2τ

∫ tn+1

tn−1

1

2
(s− tn)2utttdt,

Tn2 =− LiAijLj
(
u(tn+1) + u(tn−1)

2
− u(tn)

)
= −LiAijLj

∫ tn+1

tn−1

(s− tn)uttdt,

Tn3 =biLi

(
u(tn+1) + u(tn−1)

2
− u(tn)

)
=

1

2
biLi

∫ tn+1

tn−1

(s− tn)uttdt.

We have the following estimates,

2|(Tn1 , ẽn+1
N + ẽn−1N )| ≤ ||ẽn+1

N + ẽn−1N ||2 +
1

4τ2
||
∫ tn+1

tn−1

1

2
(s− tn)2utttdt||2

≤ ||ẽn+1
N + ẽn−1N ||2 +

τ3

40

∫ tn+1

tn−1

||uttt||2dt;

2|(Tn2 , ẽn+1
N + ẽn−1N )| = 2|Aij(Li

∫ tn+1

tn−1

(s− tn)uttdt, Lj(ẽ
n+1
N + ẽn−1N ))|

≤ 1

2
Aij(Li(ẽ

n+1
N + ẽn−1N ), Lj(ẽ

n+1
N + ẽn−1N ))

+ 2Aij(Li

∫ tn+1

tn−1

(s− tn)uttdt, Li

∫ tn+1

tn−1

(s− tn)uttdt)

≤ 1

2
Aij(Li(ẽ

n+1
N + ẽn−1N ), Lj(ẽ

n+1
N + ẽn−1N )) + Cτ3

∫ tn+1

tn−1

|utt|21dt;

2|(Tn3 , ẽn+1
N + ẽn−1N )| ≤ ||ẽn+1

N + ẽn−1N ||2 + Cτ3
∫ tn+1

tn−1

|utt|21dt.

And

2|(f(u(tn))− f(unN ), ẽn+1
N + ẽn−1N )| ≤ C1

(
||ẽn+1

N ||2 + ||ẽn−1N ||2 + ||ẽnN ||2 + ||ēnN ||2
)
.

Thus

||ẽn+1
N ||2 − ||ẽn−1N ||2

≤ C2τ(||ẽn+1
N ||2 + ||ẽn−1N ||2 + ||ẽnN ||2 + ||ēnN ||2) + C3τ

4

∫ tn+1

tn−1

|utt|21 + ||uttt||2dt.
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In the above, C2 . 1 +K2. Hence

||ẽn+1
N ||2 ≤ 3C2τ

n∑
k=0

(||ẽk+1
N ||2 + ||ēk+1

N ||2) + C3τ
4

∫ tn+1

0
|utt|21 + ||uttt||2dt, n ≥ 1.

By Gronwall’s inequality, if 3C2τ < 1, we have

||en+1
N || ≤ ||ẽn+1

N ||+ ||ēn+1
N ||

≤ exp(C4T )
(
τ2(||utt||H1(0,T ;L2) + ||uttt||L2(0,T ;L2)) +N−m||u||C(0,T ;Hm)

)
.

where C4 ∼ (1− 3C2τ)−1 ∼ (1− τ(1 +K2))−1.

5 Numerical results

We present in this section several numerical examples to validate our theoretical estimates
and to illustrate applications of Wigner D-matrix for solving PDEs on SO(3).

5.1 Elliptic equation

First we examine a stationary equation to test the spatial accuracy. Consider

−ajL2
ju+ bjLju+ cu = f(P ). (5.1)

The coefficients are chosen as follows:

a1 = 0.5, a2 = 1, a3 = 1.5;

b1 = 0.2, b2 = 0, b3 = 0.3;

c = 1.

We choose an exact solution and compute the right-hand term from the equation. Specifically
we choose

1. u1(P ) = (m22 − 0.5)2|m22 − 0.5|. In this case,

f1(P ) = 6m22(m22 − 0.5)|m22 − 0.5|+ 3(m22 − 0.5)|m22 − 0.5|(−0.3m12 + 0.2m32)

− 6(1.5m2
12 + 0.5m2

32)|m22 − 0.5|+ (m22 − 0.5)2|m22 − 0.5| ∈ H1\H2.

2. u2(P ) = exp(m22). In this case,

f2(P ) = exp(m22)(1 + 0.2m32 − 0.3m12 + 2m22 − 0.5m2
32 − 1.5m2

12) ∈ C∞.

The equation is solved using the Galerkin method (4.10). The Wigner coefficients of f is
computed using the SOFT package. The error in the L2-norm is plotted vs. N in Fig. 1
(top). For f = f1, since u1 and f1 are not smooth, we observe a convergence rate of N−3,
while for f = f2, an exponential convergence is observed since both u2 and f2 are smooth.
One can check that the convergence rate is consistent with Theorem 4.4.
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Figure 1: Errors in the L2-norm. Top: spatial discretization error for the elliptic equation.
N is plotted in linear scale (left) and in logarithmic scale (right), respectively. In these two
graphs, the dashed lines are a reference curve CN−3. Bottom: Time discretization error for
the parabolic equation.
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5.2 Parabolic equation

In polymer physics, the equation (4.16) is able to describe the chain propagator, the core
of the statistical mechanics of the polymer chain, of helical chains [23] and worm-like chains
on spherical surface [13, 14]. In what follows, we examine the equation below,

ut − a1L2
1u+ b3L3u+W (P )u = 0. (5.2)

We first give an example with exact solution to verify the accuracy in time. Then we present
another example illustrating how to compute physical quantites from the propagator.

5.2.1 Accuracy test

Here we choose a1 = 1, b3 = 0.2, and let

W (P ) = −m22 +m2
32 + 0.2m12 + 1.

The initial condition is given by

u(P, 0) = exp(m22).

Then the exact solution is
u(P, t) = exp(−t+m22).

Since the solution is smooth in space, we choose N = 16 so that the spatial error can be
ignored and we concentrate on the accuracy in time. The equation is solved till t = 1 using
and the leapfrog scheme (4.17) and a first-order backward-Euler implicit scheme. To compute
W (P )u(P ), we use the standard transform (i.e., pseudo-spectral) method [7]. The transforms
are also computed using the SOFT package. We compute the error in L2-norm at t = 1, and
plot it as a function of τ in Fig. 1 (bottom). It clearly shows that the leapfrog scheme is
second-order, compared with the first-order implicit scheme.

5.3 A physical example

We consider a worm-like chain on the spherical surface. We will briefly describe the
problem below and refer to [13, 14] for more detailed derivation. We also refer to [5] for a
general interpretation of the models for polymer chains.

Suppose that the chain has the length l. The arc length parameter s ∈ [0, l], referred
to as contour length, is used to represent the location of a monomer on the chain. The
configuration of the chain is represented by a function r(s) ∈ S2(R), describing the location
of the monomer s on the sphere of the diameter R. The direction of the monomer s is given
by the unit tangent vector u = dr/ds. The problem can be non-dimensionalized such that
we may assume R = 1 and s ∈ [0, 1].

The equation (5.2) of the chain propagator u is derived from the total energy of the worm-
like chain, consisting of two parts. In this case, the contour length s is recognized as the time
t in (5.2). The first part is the bending energy of the chain, reflected by −a1L2

1 + b3L3 in
(5.2); the second part is contributed by the monomers in the external field W . Both parts are
related to the position r and the direction u. For this reason, the propagator is a function
of t = s and the pair (r,u). Since the chain is on the spherical surface, the tangent vector u
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must be vertical to r. Thus the pair (r,u) is equivalent to an element in P ∈ SO(3) if we let
r = m1(P ) and u = m2(P ). The parameter b3 = l/R is the ratio of the chain length over
the radius of the sphere, and a1 = 1/2λ is the bending constant of the chain.

The fundamental quantity is the density ρ(r,u) = ρ(P ) of monomers at the position
r with the direction u. It is calculated from the propagator u(P ) and the complementary
propagator uc(P, t), i.e. the propagator starting from the other end of the chain, which
satisfies

(uc)t − a1L2
1uc − b3L3uc +W (PJ)uc = 0, J = diag(1,−1,−1). (5.3)

The initial condition of (5.2) and (5.3) shall be u(P, 0) = uc(P, 0) = 1.
With u(P ) and uc(P ), the number density of monomers at contour s is given by

ρ(P, s) ∝ u(P, s)uc(P, 1− s). (5.4)

Hence the number density of monomers, regardless of the contour length, is given by

ρ(P ) ∝
∫ 1

0
ds ρ(P, s) =

∫ 1

0
ds u(P, s)uc(P, 1− s). (5.5)

The normalization constant is given by

Z =

∫
dP u(P, 1) =

∫
dP u(P, s)uc(P, 1− s), ∀s ∈ [0, 1]. (5.6)

Thus

ρ(P ) =

(∫
dP u(P, 1)

)−1 ∫ 1

0
ds u(P, s)uc(P, 1− s). (5.7)

We choose a1 = 0.3, b3 = 0.8, and

W (P ) = −3 sin2 β cos2(γ − β) = −3(m31

√
1−m2

11 −m11)
2. (5.8)

The discretization parameters are chosen as ∆t = 0.05 and N = 16. At each point on
the spherical surface, we compute the number density ρ̄(m1) of monomers regardless of the
direction u, and the second-order tensor Q(m1) describing the orientation,

ρ̄(m1) =

(
2π

∫
dP ρ(P )

)−1 ∫
dγ ρ(P ), (5.9)

Q(m1) =

(∫
dγ ρ(P )

)−1 ∫
dγ

(
cos2 γ − 1

2 cos γ sin γ
cos γ sin γ sin2 γ − 1

2

)
ρ(P ). (5.10)

The principal eigenvector n1 of Q represents the direction along which the monomers accu-
mulate. The corresponding eigenvalue describes how much they accumulate near n1.

Since W depends only on mj1, we know that ρ̄(m1) and p(m1) are functions of m11.
Suppose the two polars are chosen as (±1, 0, 0) and the longitudes are connecting the two
polars. We plot in Fig. 2 the number density ρ̄(m1), the principal eigenvalue λ1, and the
angle θ between n1 and the longitudinal line. We can see that under the field (5.8), more
monomers appear at low latitudes. Also they accumulate more along n1 at low latitudes.
The principal eigenvector n1 is vertical to the longitudinal line at zero latitude, and turns
toward the longitudinal line when the longitude grows.
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Figure 2: Top: the number density. Bottom left: the principal eigenvalue of Q. Bottom
right: the angle between the principal eigenvector and the longitudinal line.
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In the self-consistent field theory for polymer, the free energy can be written as a functional
of W . Minimizing the free energy gives another equation about W and ρ, forming a closed
system together with (5.2) (5.3) and (5.7). When solving the system, the iterating procedure
below is followed:

1. Solve the propagators u and uc from (5.2) and (5.3) for a given field W .

2. Compute from u the density function ρ using (5.7).

3. Update the field W from ρ.

The above procdure is repeated until convergence, which is done in [14]. In every single
iteration step, we need to solve (5.2) and (5.3). The accuracy and efficiency is crucial to
finding the self-consistent solutions.

6 Concluding remark

Just as spherical harmonic functions are the natural basis for functions on the sphere,
Wigner D-matrix forms a natural basis for functions on SO(3). We established in this paper
basic approximation results of Wigner D-matrix on SO(3), and showed that they enjoy typical
spectral-type of approximation properties. We then developed efficient numerical methods
for solving elliptic equations and parabolic equation on SO(3), proved optimal error estimates
and present numerical results to validate the numerical algorithms and error estimates. To
the best of our knowledge, this is a first paper on the numerical analysis of Wigner D-matrix
which plays important role in quantum mechanics and in modeling of liquid crystals and
polymers.

The approximation results and basic algorithms presented in this paper will be useful in
using Wigner D-matrix for other PDEs on SO(3), particularly those arising from quantum
mechanics and in liquid crystal polymers. Indeed, we aim to use the results presented here
to approximate Smoluchowski equations of liquid crystals.
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