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Abstract

We propose an unconditionally stable numerical scheme for a 2D dynamic Q-tensor model
of nematic liquid crystals. This dynamic Q-tensor model is a L2 gradient flow generated by the
liquid crystal free energy that contains a cubic term, which is physically relevant but makes the
free energy unbounded from below, and for this reason, has been avoided in other numerical
studies. The unboundedness of the energy brings significant difficulty in analyzing the model and
designing numerical schemes. By using a stabilizing technique, we construct an unconditionally
stable scheme, and establish its unique solvability and convergence. Our convergence analysis
also leads to, as a byproduct, the well-posedness of the original PDE system for the 2D Q-tensor
model. Several numerical examples are presented to validate and demonstrate the effectiveness
of the scheme.

1 Introduction

Liquid crystals are an intermediate state of matter between the commonly observed solid and liquid

that has no or partial positional order but do exibit an orientional order. The nematic phase is the

simplest among all liquid crystal phases whose rod-like molecules have no translational order but

possesses a certain degree of long-range orientaional ordering. The Landau-de Gennes theory [7] is

a continuum theory to describe the nematic liquid crystals. In this framework, it is widely accepted

that the local orientation and degree of ordering for the liquid crystal molecules are characterized

by a symmetric, traceless d× d tensor called the Q-tensor in Rd (d = 1, 2, 3) [1, 22]. The Q-tensor

vanishes in the isotropic phase, and hence it serves as an order parameter. The Q-tensor order

parameter may exhibit two different phases, namely the uniaxial phase and the biaxial phase. In

the former phase, Q has uniaxial symmetry and the symmetry axis is defined by a unit vector n⃗

called the director. In the latter biaxial phase, the structure of Q is more complicated. There exists

a vast literature on the mathematical study of the Landau-de Gennes theory, see [2,3,9,18,21,24,25]

and the references therein.

The equilibrium states are physically observable configurations which correspond to either global

or local minimizers of the free energy subject to certain imposed boundary conditions. Consider a
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nematic liquid crystal filling a smooth, bounded domain Ω ⊂ Rd, and for the sake of simplicity, we

suppose that the material is spatially homogeneous and the temperature is constant. Historically,

the first step toward the understanding of its free energy is attributed to [11, 23] where the free

energy density functional (called the Oseen-Frank energy density) is expressed in terms of the

director n⃗ with elastic constants K1, · · ·K4:

WOF =
K1

2
(∇ · n⃗)2 + K2

2
|n⃗× (∇× n⃗)|2 + K3

2
|n⃗ · (∇× n⃗)|2 + K2 +K4

2
[tr(∇n⃗)2 − (∇ · n⃗)2]. (1.1)

Here K1, · · ·K3 measure [11] the resistance of three basic distortions, called splay, twist and bend,

respectively, and the last term in (1.1) is related to the twisted splay distortion, which is a null La-

grange term but is kept in most literature because this term does contribute to the total free energy

for some types of boundary value problems [14]. The Oseen-Frank formulation is generally consis-

tent with experiment except near the nematic-smectic phase transition [8]. In order to generalize

the Oseen-Frank description close to the clearing point, de Gennes [7] proposed a Ginzburg-Landau

type expansion of the free energy in terms of the tensor parameter Q and its spatial derivatives.

The Landau-de Gennes free energy functional is derived as a nonlinear integral functional of the

Q-tensor and its spatial derivatives [1]:

E [Q] =

∫

Ω
F(Q(x)) dx, (1.2)

where Q is in the Q-tensor space (c.f. [1, 3, 22]) defined by

S(d) def
=

{
M ∈ Rd×d

∣∣∣
d∑

i=1

M ii = 0, M ij = M ji ∈ R, ∀ i, j = 1, · · · , d
}
.

The free energy density functional F consists of the elastic part Fel that depends on the gradient

of Q, and the bulk part Fbulk that depends on Q only [15], i.e.,

F(Q) = Fel +Fbulk. (1.3)

The bulk free-energy density Fbulk is typically a truncated expansion in the scalar invariants of the

tensor Q. In the simplest setting one may take

Fbulk
def
=

a

2
tr(Q2) +

b

3
tr(Q3) +

c

4
tr2(Q2), (1.4)

where a, b, c are assumed to be bulk material constants. This bulk term (1.4) embodies the or-

dering/disordering effects, which drive the nematic-isotropic phase transition. It depends only on

the eigenvalues of Q. Meaningful simulations can be performed using an expansion truncated at

the fourth order, to which we have to use in order to have a potential with multiple stable local

minima [9].

On the other hand, the elastic free-energy density Fel gives the strain energy density due to

spatial variations in the tensor order parameter. Its simplest form that is invariant under rigid

rotations and material symmetry is as follows [1, 22]:

Fel
def
= L1|∇Q|2 + L2∂jQ

ik∂kQ
ij + L3∂jQ

ij∂kQ
ik + L4Q

lk∂kQ
ij∂lQ

ij . (1.5)
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Here and after we use the Einstein summation convention over repeated indices. The material

elastic constants Lk (k = 1, 2, 3, 4) are assumed to be non-dimensional. It is worth pointing out

that Fel in (1.5) consists of three independent terms with constants L1, L2, L3 that are quadratic

in the first partial derivatives of the components of Q, plus an unusual cubic term with constant

L4. As mentioned in [15,18], the retention of this L4 cubic term is due to the consideration that it

gives a complete reduction of F [Q] to the classical Oseen-Frank energy density WOF . This is done

by formally taking Q(x) = s+
(
n⃗(x)⊗ n⃗(x)− 1

dI
)
, where s+ ∈ R+ and substituting it in (1.1). It

is shown in [15, 18] that if L4 = 0, then K1 ≡ K3 during the reduction, which clearly contradicts

experiment. On the other hand, this L4 term causes the Landau-de Gennes free energy to be

unbounded from below [2].

In order to remedy the aforementioned deficiency in the static configurations, one way is to

replace the bulk potential part defined in (1.5) with a singular type potential [2]; alternatively, a

dynamic case is later proposed in [15] to keep the more common bulk potential in (1.5). More

specifically, the authors in [15] studies the following L2 gradient flow in R2 corresponding to the

energy functional E [Q] where Q takes values in S(2):

∂Qij

∂t
= −

(
δE
δQ

)ij

+ λδij + µij − µji, 1 ≤ i, j ≤ 2. (1.6)

In (1.6), λ is the Lagrange multiplier corresponding to the traceless constraint and µ = (µij)2×2

is the Lagrange multiplier corresponding to the matrix symmetry constraint, and δE
δQ denotes the

variational derivative of E with respect to Q. In addition, we always impose hereafter the coercivity

condition [15] (see also [9] for its counterpart in 3D)

L1 + L2 > 0, L1 + L3 > 0, (1.7)

and

c > 0. (1.8)

From the modeling point of view, (1.7) is imposed to guarantee that the summation of the first

three quadratic terms concerning L1, L2, L3 in Fel is positive definite, while (1.8) is to ensure Fbulk

is bounded from below. Moveover, as noted in [5, 15], the term b
3tr(Q

3) can be ignored from (1.4)

since tr(Q3) = 0 for any Q ∈ S(2).

After expansion, the evolution equation (1.6) reads

∂tQ
ij = ζ∆Qij + L4

{
2∂k
(
Qlk∂lQ

ij
)
− ∂iQ

kl∂jQ
kl +

|∇Q|2δij

2

}
−
[
a+ c tr(Q2)

]
Qij, (1.9)

for 1 ≤ i, j ≤ 2, with initial and boundary conditions given by

Q(x, 0) = Q0(x), and Q(x, t)|∂Ω = Q̃(x), Q0|∂Ω = Q̃. (1.10)

Note that

ζ
def
= 2L1 + L2 + L3 > 0 (1.11)

under the coercivity condition (1.7).
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Since the free energy E [Q] is unbounded from below when L4 ̸= 0, generally one may not expect

a global existence result to the problem (1.9)-(1.10) without involving a smallness assumption of

Q(·, t). To be more precise, this gradient flow gives us the following energy dissipative law for

smooth solutions Q(·, t) that satisfies

d

dt
E [Q] = −

∫

Ω

∣∣∣∣
δE
δQ

− λI2 + µ− µT

∣∣∣∣
2

dx,

which immediately produces the integral equality

E [Q(·, t)] +
∫ t

0

∫

Ω

∣∣∣∣
δE
δQ

− λI2 + µ− µT

∣∣∣∣
2

dx ds = E [Q(·, 0)], ∀t > 0. (1.12)

Here I2 stands for the 2 × 2 identity matrix. However, we cannot get any a priori control of

∥Q(·, t)∥H1(Ω) from (1.12) because of the unboundedness of E [Q].

Fortunately, the mathematical structure of (1.9) is exploited thoroughly in [15] so that for any

smooth solutions to the evolution problem, the smallness of ∥Q0∥L∞(Ω) will be preserved as time

evolves. Based on this property plus the coercivity condition (1.7), the authors in [15] obtain the

necessary a priori bounds from the energy equality (1.12), which paves the way to obtain the global

existence result.

Along the numerical front, there exists only a few studies on the the Q-tensor model. For the

stationary cases with L4 = 0, there have been several studies on phase transitions [17], density

variations [27], singularities [4] and liquid crystal alignments [6]. For the dynamic Q-tensor model

with L4 = 0, a spectral method was used in [30] to study the instability of nanorod dispersions,

an adaptive moving mesh method was proposed in [16], and a stable finite element discretization

was introduced in [4] for the gradient flow dynamics with constant orientational order parameter.

However, to the best of our knowledge, there has been no study, simulation or numerical analysis for

the Q-tensor model in the general case with L4 ̸= 0. Notice that this unusual cubic term (L4 ̸= 0)

corresponds to the compatibility between the Q-tensor model and the Oseen-Frank model for liquid

crystal [15,18].

In this paper we construct an unconditionally stable numerical scheme for the full dynamic

Q-tensor model (1.9)-(1.10). Since the system admits an energy law (1.12), it is desirable to design

an energetically stable scheme to approximate the Q-tensor model (1.9) -(1.10). On the other hand,

the energy stability (or the energy boundedness) does not imply well-posedness of the evolution

problem because the non-zero term L4 ̸= 0, unless the L∞ norm of the solution is kept small.

Inspired by this observation, we need to show, in addition to energy stability, that L∞ norm of the

solutions can be kept small, in order to prove the well-posedness of the nonlinear system at each

time step. This is much more challenging than establishing the energy stability.

The rest of the paper is organized as follows. In section 2, we present our semi-discrete numerical

scheme for (1.9)-(1.10) and establish its unique solvability and convergence. As a byproduct,

we obtain the well-posedness of (1.9)-(1.10). We show some numerical tests in section 3, and

demonstrate the accuracy and efficiency of our proposed scheme. Finally, some conclusions are

drawn in section 4.
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We provide below some notations and definitions to be used in the rest of the paper.

For matrices A,B ∈ R2×2, we define the Frobenius product between A and B by

A : B
def
= tr(AtB).

For Q ∈ R2×2, we use |Q| to denote its Frobenius norm, i.e.,

|Q| def
=
√

tr(QtQ) =

√ ∑

1≤i,j≤2

QijQij.

Besides, we define the matrix valued Lp (1 ≤ p ≤ ∞) space by

Lp(Ω → R2×2)
def
=
{
Q : Ω → R2×2, |Q| ∈ Lp(Ω,R)

}
.

Further, for any smooth scalar function u : Ω → R, we define the following Hölder norms and

semi-norms:

[u]Cα(Ω̄)
def
= sup

x ̸=y∈Ω

|u(x)− u(y)|
|x− y|α , 0 < α ≤ 1.

[u]C1+α(Ω̄)
def
= max

1≤i≤2
[∂iu]Cα(Ω̄), [u]C2+α

def
= max

1≤i,j≤2
[∂i∂ju]Cα(Ω̄), 0 < α ≤ 1.

∥u∥C0(Ω̄)
def
= sup

x∈Ω
|u(x)|,

∥u∥Cα(Ω̄)
def
= ∥u∥C0(Ω) + [u]Cα(Ω̄), 0 < α ≤ 1.

∥u∥C1+α(Ω̄)
def
= ∥u∥C1(Ω̄) + [u]C1+α(Ω̄), 0 < α ≤ 1.

∥u∥C2+α(Ω̄)
def
= ∥u∥C2(Ω̄) + [u]C2+α(Ω̄), 0 < α < 1.

For a tensor valued functionQ : Ω → R2×2, the corresponding norms are defined to be the maximum

of each component, for instance, [Q]Cα(Ω̄) = max
1≤i,j≤2

[Qij]Cα(Ω̄); and the corresponding Hölder space

by

Cα(Ω̄ → R2×2)
def
=
{
Q : Ω → R2×2, max

1≤i,j≤2
[Qij ]α ∈ Cα(Ω̄)

}
.

Without ambiguity, Lp(Ω → R2×2) will often be abbreviated as Lp(Ω) (1 ≤ p ≤ ∞), and Ck+α(Ω̄ →
R2×2) as Ck+α(Ω̄) (0 ≤ α < 1, k ∈ Z+). For the sake of simplicity, we at times use ∥ ·∥Lp to denote

∥ · ∥Lp(Ω) , and ∥ · ∥Ck+α to denote ∥ · ∥Ck+α(Ω̄), respectively. We denote the partial derivative with

respect to xk of the ij component of Q, by ∂kQij.

2 Time discretization and its analysis

Let Q̃ ∈ C2+α(Ω̄). We start with Q0 ∈ C2+α(Ω̄), and for n = 0, 1, 2, · · · , and ∆t > 0, find Qn+1

from the following stabilized discretizations for (1.9)-(1.10):

Qij,n+1 −Qij,n

∆t
= ζ∆Qij,n+1 − aQij,n+1 − c|Qn+1|2Qij,n+1 − L(Qij,n+1 −Qij,n)|∇Qn+1|2
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+ L4

{
2∂k
(
Qlk,n∂lQ

ij,n+1
)
− ∂iQ

kl,n+1∂jQ
kl,n+1 +

|∇Qn+1|2

2
δij
}
, (2.1)

Qn+1|∂Ω = Q̃; 1 ≤ i, j ≤ 2. (2.2)

Several remarks are in order:

• The above scheme is essentially a backward Euler scheme with an additional stabilizing term

−L(Qij,n+1 −Qij,n)|∇Qn+1|2 which plays an essential role in our analysis below. The stabi-

lizing constant L > 0 is to be determined later (cf. (2.4)).

• It is easy to see that (2.1) is a first order accurate approximation to (1.9).

• (2.1) can be simplified by taking into account of the traceless and symmetry properties of the

Q-tensor function (cf. (3.1)), but we consider the current form (2.1) for generality.

Our main result regarding the convergence of (2.1)-(2.2) is stated in Theorem 2.2. Before

proving the convergence, we are going to establish the unique solvability first, since the scheme

(2.1)-(2.2) is highly nonlinear and its solvability is non-trivial.

2.1 A priori estimates and well-posedness of (2.1)-(2.2)

We start with some a priori estimates for the time-discrete problem (2.1)-(2.2).

Lemma 2.1. Let Qn ∈ C2+α(Ω̄), and assume

max
{
∥Qn∥L∞(Ω), ∥Q̃∥L∞(∂Ω)

}
≤ ζ

(1 +
√
6)|L4|

, (2.3)

and that the stabilized constant L satisfies

L ≥ (
√
6 + 1)|L4|2

ζ
, (2.4)

where ζ is defined in (1.11). Then, if Qn+1 ∈ C2+α(Ω̄) is a classical solution of (2.1)-(2.2), it holds

∥Qn+1∥L∞(Ω) ≤ max

{

∥Qn∥L∞(Ω),

√
a−

c

}

, (2.5)

where a− = max{0,−a}.

Proof. Denoting

ρn = |Qn|2, ρn+1 = |Qn+1|2 (2.6)

and multiplying both sides of (2.1) with 2Qij,n+1, then summing up for 1 ≤ i, j ≤ 2, we get

|Qn+1|2 + |Qn+1 −Qn|2 − |Qn|2

∆t

= ∂k
[(
ζδkl + 2L4Q

lk,n
)
∂lρ

n+1
]
−
(
4L4Q

lk,n + 2ζδkl
)
∂kQ

ij,n+1∂lQ
ij,n+1
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− 2L4Q
ij,n+1∂iQ

kl,n+1∂jQ
kl,n+1 + L4tr(Q

n+1)|∇Qn+1|2 −
(
a+ c|Qn+1|2

)
|Qn+1|2

− 2L
[
|Qn+1|2 − tr((Qn)tQn+1)

]
|∇Qn+1|2. (2.7)

Let us assume ρn+1(·) take its maximum value at some point x0 ∈ Ω. Evaluating equation (2.1) at

x0, then we have

Case 1: if |Qn+1|(x0) ≤
√

a−
c , then the proof is complete.

Case 2: otherwise, we can assume
√

ρn+1(x0) >
√

ρn(x0), because
√

ρn+1(x0) ≤
√

ρn(x0) will

yield the conclusion (2.5) directly. First, for any matrix Q ∈ R2×2 and row vector b = (b1, b2),

using Cauchy-Schwarz inequality, we have

|Qijbibj | ≤ 1

2

(
(2|Q11|+ |Q12|+ |Q21|)|b1|2 + (|Q12|+ |Q21|+ 2|Q22|)|b2|2

)
≤

√
6

2
|Q| (|b1|2 + |b2|2).

As a consequence, it holds

−
(
4L4Q

lk,n + 2ζδkl
)
∂kQ

ij,n+1∂lQ
ij,n+1 ≤ −(2ζ − 2

√
6|L4|

√
ρn)|∇Qn+1|2. (2.8)

Besides, using Cauchy-Schwarz repeatedly we get

−2L4Q
ij,n+1∂iQ

kl,n+1∂jQ
kl,n+1 + L4tr(Q

n+1)|∇Qn+1|2

= −2L4(Q
12,n+1 +Q21,n+1)∂1Q

kl,n+1∂2Q
kl,n+1 − L4(Q

11,n+1 −Q22,n+1)∂1Q
kl,n+1∂1Q

kl,n+1

+ L4(Q
11,n+1 −Q22,n+1)∂2Q

kl,n+1∂2Q
kl,n+1

≤ |L4|
(
|Q11,n+1|+ |Q12,n+1|+ |Q21,n+1|+ |Q22,n+1|

)
|∇Qn+1|2

≤ 2|L4||Qn+1||∇Qn+1|2 (2.9)

Using (2.8), (2.9) and the assumption (1.8), we see that (2.7) is reduced to

ρn+1(x0)− ρn(x0)

∆t
≤ −(2ζ − 2

√
6|L4|

√
ρn)|∇Qn+1|2 + 2|L4|

√
ρn+1|∇Qn+1|2

− c
(
ρn+1 − a−

c

)
ρn+1 − 2L

(
ρn+1 −

√
ρn
√

ρn+1
)
|∇Qn+1|2 (2.10)

≤ −
[
2ζ − 2

√
6|L4|

√
ρn + 2Lρn+1 −

(
2|L4|+ 2L

√
ρn
)√

ρn+1
]
|∇Qn+1|2.

Note that the quadratic function 2Lρn+1 −
(
2|L4|+ 2L

√
ρn
)√

ρn+1 in terms of
√

ρn+1 in (2.10) is

monotone increasing in the interval Iρn = [ |L4|
2L + 1

2

√
ρn,∞), and attains its minimum at |L4|

2L + 1
2

√
ρn.

If
√

ρn(x0) ≥ |L4|
L , then

√
ρn+1(x0) >

√
ρn(x0) ≥ |L4|

2L + 1
2

√
ρn(x0), and based on (2.3), it is

easy to check from equation (2.10) that for the case
√

ρn(x0) >
|L4|
L ,

ρn+1(x0)− ρn(x0)

∆t
≤ −

[
2ζ − 2

√
6|L4|

√
ρn(x0)− 2|L4|

√
ρn(x0)

]
|∇Qn+1(x0)|2 ≤ 0,

which yields |Qn+1|(x0) ≤ ∥Qn∥L∞(Ω) so (2.5) holds.
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On the other hand, if
√
ρn(x0) <

|L4|
L , similarly as above, we derive from equation (2.10) that,

for L satisfying (2.4), it holds

ρn+1(x0)− ρn(x0)

∆t
≤−

[
2ζ − 2

√
6|L4|

√
ρn(x0)−

L

2

(
|L4|
L

+
√

ρn(x0)

)2
]
|∇Qn+1(x0)|2

≤−
[

2ζ − 2
√
6|L4|

ζ

(1 +
√
6)|L4|

− L

2

(
|L4|
L

+
|L4|
L

)2
]

|∇Qn+1(x0)|2

≤−
[
2

ζ

(1 +
√
6)

− 2|L4|2
L

]
|∇Qn+1(x0)|2

≤0,

which immediately implies (2.5).

Combining all the arguments above, the proof is complete.

Remark 2.1. It is easy to check from the proof of Lemma 2.1 that (2.5) is still valid if the R.H.S.

of (2.3) is replaced by any sufficiently small constant η > 0, and L satisfies (2.4).

Note that in the above Lemma 2.1 we proved that for classical solutions, the L∞ norm at the

(n + 1)-th step will remain to be small, provided that the L∞ norm at the n-th step is assumed

to be small (small boundary data and a−

c as well). But we have not yet proved the existence of

such classical solutions to (2.1)-(2.2). To this end, we shall apply the Leray-Schauder theory for

the existence of classical solutions. For the reader’s convenience, first we recall below the Leray-

Schauder fixed point theorem [13].

Theorem 2.1 (Leray-Schauder fixed point theorem). Let B be a Banach space and T : B× [0, 1] →
B a compact map such that

1. T (x, 0) = 0, ∀x ∈ B,

2. there exists a constant M > 0 such that for each pair (x,σ) ∈ B × [0, 1] which satisfies

x = T (x,σ), we have

∥x∥ < M. (2.11)

Then the map T1 : B → B given by T1y = T (y, 1), y ∈ B has a fixed point.

By virtue of Theorem 2.1, we have

Proposition 2.1. Let Qn ∈ C2+α(Ω̄ → R2×2). Suppose ∥Qn∥C0(Ω̄), ∥Q̃∥C0(∂Ω) and a−

c are suffi-

ciently small and L satisfies (2.4). Then there exists a classical solution Qn+1 ∈ C2+α(Ω̄ → R2×2)

to the system (2.1)-(2.2). Furthermore, (2.5) is also satisfied.

Proof. To utilize Theorem 2.1, we define

B = C1+α(Ω̄ → R2×2),
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and a map

T : B × [0, 1] → B.

Here T (u, θ) ∈ C2+α(Ω̄ → R2×2) ⊂ B with u ∈ B, θ ∈ [0, 1] solves the equation

θ
{
ζ∆wij + 2L4∂k(Q

lk,n∂lw
ij)− L4∂iu

kl∂ju
kl +

L4

2
|∇u|2δij − (a+ c|u|2)uij

− L(uij −Qij,n)|∇u|2 − uij −Qij,n

∆t

}
+ (1− θ)∆wij = 0, 1 ≤ i, j ≤ 2,

w|∂Ω = θQ̃.

We proceed to prove that all conditions in Theorem 2.1 are satisfied. To begin with, it is easy to

see that T (u, 0) = 0, ∀u ∈ B. Next we assume (u,σ) ∈ B × [0, 1] satisfies u = T (u,σ), that is,

∂k
{[

(σζ + 1− σ)δkl + 2σL4Q
n
]
∂lu

ij
}

= σ
{
L4∂iu

kl∂ju
kl − L4

2
|∇u|2δij + (a+ c|u|2)uij + L(uij −Qij,n)|∇u|2 + uij −Qij,n

∆t

}

.
= σf ij, 1 ≤ i, j ≤ 2, (2.12)

u|∂Ω = σQ̃. (2.13)

Then, following the same procedure in Lemma 2.1, one may conclude

∥u∥C0 ≤ max

{

∥Qn∥C0 ,

√
a−

c

}

, (2.14)

provided that ∥Qn∥C0 , ∥Q̃∥C0(∂Ω) and
a−

c are sufficiently small. As a consequence, using the classical

Schauder estimate (see Theorem 6.6 in [13]), interpolation inequality and Young’s inequality, one

can derive from (2.12)-(2.13) that for sufficiently small ∥Qn∥C0 , we have

∥u∥C2+α ≤ C∥u∥C0 + C∥Q̃∥C2+α +C∥σf∥Cα

≤ C∥Q0∥C0 + C +C∥f∥Cα

≤ C + C∥|∇u|2∥Cα +C∥au+ c|u|2u∥Cα + C∥u|∇u|2∥Cα

+ C∥Qn|∇u|2∥Cα +C
(
∥u∥Cα + ∥Qn∥Cα

)

≤ C + C∥u∥Cα + C∥|∇u|2∥Cα + C∥u|∇u|2∥Cα + C∥Qn|∇u|2∥Cα

≤ C + C∥u∥
2

2+α

C0 ∥u∥
α

2+α

C2+α + C∥|∇u|∥C0∥|∇u|∥Cα + C
(
∥u∥C0 + ∥Qn∥C0

)
∥|∇u|2∥Cα

+ C
(
∥u∥Cα + ∥Qn∥Cα

)
∥|∇u|2∥C0

≤ C + C∥u∥
2

2+α

C0 ∥u∥
α

2+α

C2+α + C∥u∥C0∥u∥C2+α + C
(
∥u∥C0 + ∥Qn∥C0

)
∥u∥C0∥u∥C2+α

+ C∥u∥2C0∥u∥C2+α + C∥Qn∥
2

2+α

C0 ∥Qn∥
α

2+α

C2+α∥u∥
2+2α
2+α

C0 ∥u∥
2

2+α

C2+α

≤ C +
1

2
∥u∥C2+α . (2.15)

9



In the above C > 0 is a generic constant that may depend on Ω, ∆t, ∥Q0∥C0 , ∥Q̃∥C2+α , ∥Qn∥C2+α

and coefficients of the system. Therefore (2.11) is valid. In addition, it is easy to check that T
is a compact map due to the compact embedding C2+α(Ω̄) ↪→ C1+α(Ω̄). Thus all conditions in

Theorem 2.1 are satisfied and in conclusion T1y = T (y, 1) has a fixed point, which is equivalent to

say that the system (2.1)-(2.2) admits a classical solution Qn+1 ∈ C2+α(Ω̄).

For classical solutions whose existence was proved in Proposition 2.1 above, we proceed to

establish the following uniform estimates.

Proposition 2.2. The classical solutions established in Proposition 2.1 satisfy the following uni-

form bounds:

∥∇Qn+1∥2L2(Ω) ≤ C∆t+ C∥∆Q0∥2L2(Ω)∆t+ ∥∇Q0∥2L2(Ω), ∀ 0 ≤ n <
[ T
∆t

]
, (2.16)

[ T
∆t ]∑

n=1

∥∆Qn∥2L2(Ω)∆t ≤ CT + ∥∇Q0∥2L2(Ω) + ∥∆Q0∥2L2(Ω)∆t, (2.17)

provided that there exists a sufficiently small (but computable) constant ε > 0 such that

max

{
∥Q0∥L∞(Ω), ∥Q̃∥L∞(∂Ω),

√
a−

c

}
≤ ε. (2.18)

Here C > 0 is a constant that only depends on ζ, ε, Ω, a, c and L4, but independent of n or ∆t.

Proof. Multiplying equation (2.1) with −∆Qij,n+1 and integrating over Ω, we find

1

2∆t

∫

Ω
|∇Qn+1|2 + |∇Qn+1 −∇Qn|2 − |∇Qn|2 dx

= −ζ

∫

Ω
|∆Qn+1|2 dx+ a

∫

Ω
Qij,n+1∆Qij,n+1dx+ c

∫

Ω
|Qn+1|2Qij,n+1∆Qij,n+1dx

+ L

∫

Ω
|∇Qn+1|2

(
Qij,n+1 −Qij,n

)
∆Qij,n+1dx− 2L4

∫

Ω
Qlk,n∂k∂lQ

ij,n+1∆Qij,n+1dx

− L4

∫

Ω

{
2∂kQ

lk,n∂lQ
ij,n+1 − ∂iQ

kl,n+1∂jQ
kl,n+1 +

|∇Qn+1|2

2
δij
}
∆Qij,n+1dx

= ζ

∫

Ω
|∆Qn+1|2 dx+ I1 + · · · + I5. (2.19)

We estimate below the terms I1 through I5 individually. To begin with, it follows from (2.5) and

(2.18) that

∥Qn+1∥L∞(Ω) ≤ ε. (2.20)

Using Young’s inequality and (2.20), we obtain

I1 + I2 ≤
ζ

8
∥∆Qn+1∥2 + C

(
∥Qn+1∥2L2 + ∥Qn+1∥6L6

)

≤ ζ

8
∥∆Qn+1∥2 + C

(
ε2 + ε6

)
|Ω|
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≤ ζ

8
∥∆Qn+1∥2 + C. (2.21)

By (2.20), Gagliardo-Nirenberg interpolation inequality and classical elliptic PDE theory [10], we

get

I3 ≤ L∥∇Qn+1∥2L4

(
∥Qn+1∥L∞ + ∥Qn∥L∞

)
∥∆Qn+1∥L2

≤ C
(
∥Qn+1∥L∞ + ∥Qn∥L∞

)
∥Qn+1∥L∞

(
∥∆Qn+1∥L2 + ∥Qn+1∥L2 + ∥Q̃∥

H
3
2 (∂Ω)

)
∥∆Qn+1∥L2

≤ Cε2
(
∥∆Qn+1∥L2 + ∥Qn+1∥L2 + ∥Q̃∥

H
3
2 (∂Ω)

)
∥∆Qn+1∥L2

≤ ζ

8
∥∆Qn+1∥2 + C, (2.22)

and

I4 ≤ 2|L4|∥Qn∥L∞∥∇2Qn+1∥L2∥∆Qn+1∥L2

≤ C∥Qn∥L∞
(
∥∆Qn+1∥L2 + ∥Qn+1∥L2 + ∥Q̃∥

H
3
2 (∂Ω)

)
∥∆Qn+1∥L2

≤ ζ

8
∥∆Qn+1∥2 +C. (2.23)

Similarly as in the estimate of I3, we can obtain

I5 ≤ 2|L4|∥∇Qn∥L4∥∇Qn+1∥L4∥∆Qn+1∥L2 + 2|L4|∥∇Qn+1∥2L4∥∆Qn+1∥L2

≤ ζ

4
∥∆Qn∥2 + ζ

8
∥∆Qn+1∥2 + C. (2.24)

Combining the above we conclude that ∀ 0 ≤ n <
[
T
∆t

]
, it holds

∥∇Qn+1∥2L2 + ∥∇Qn+1 −∇Qn∥2L2 −∥∇Qn∥2L2 ≤ −ζ∥∆Qn+1∥2L2∆t+
ζ

2
∥∆Qn∥2L2∆t+C∆t. (2.25)

As a consequence, summing up the above estimate (2.25) for n from 0 to [ T∆t ] − 1 leads to (2.16)

and (2.17).

Based on the uniform estimates (2.16) and (2.17) established in Proposition 2.2, we can further

obtain the uniqueness result concerning the classical solutions of the system (2.1)-(2.2).

Proposition 2.3. Let Qn ∈ C2+α(Ω̄). Suppose Pn+1, Qn+1 ∈ C2+α(Ω̄) are two classical solutions

to the problem (2.1)-(2.2) that satisfy (2.20). If ε in Proposition 2.2 is chosen to be suitably small

(but independent of n or ∆t), then

Pn+1 ≡ Qn+1.

Proof. Let R̄n+1 = Qn+1 − Pn+1. We have

R̄ij,n+1

∆t
= ζ∆R̄ij,n+1 − aR̄ij,n+1 − c

(
|Qn+1|2Qij,n+1 − |Pn+1|2P ij,n+1

)

11



− L
(
Qij,n+1|∇Qn+1|2 − P ij,n+1|∇Pn+1|2

)
+ LQij,n

(
|∇Qn+1|2 − |∇Pn+1|2

)

+ 2L4∂k
(
Qlk,n∂lR̄

ij,n+1
)
− L4

(
∂iQ

lk,n+1∂jQ
lk,n+1 − ∂iP

lk,n+1∂jP
lk,n+1

)

+
L4

2

(
|∇Qn+1|2 − |∇Pn+1|2

)
δij , (2.26)

R̄n+1|∂Ω = 0. (2.27)

Multiplying equation (2.26) with R̄n+1, integrating over Ω and using the boundary condition (2.27),

we obtain

∥R̄n+1∥2L2

∆t

= −ζ∥∇R̄n+1∥2L2 − a∥R̄n+1∥2L2 − c

∫

Ω

(
|Qn+1|2Qij,n+1 − |Pn+1|2P ij,n+1

)
R̄ij,n+1 dx

− L

∫

Ω

(
|∇Qn+1|2Qij,n+1 − |∇Pn+1|2P ij,n+1

)
R̄ij,n+1 dx

+ L

∫

Ω

(
|∇Qn+1|2 − |∇Pn+1|2

)
Qij,nR̄ij,n+1 dx− 2L4

∫

Ω
Qlk,n∂lR̄

ij,n+1∂kR̄
ij,n+1dx

− L4

∫

Ω

(
∂iQ

lk,n+1∂jQ
lk,n+1 − ∂iP

lk,n+1∂jP
lk,n+1

)
R̄ij,n+1dx

+
L4

2

∫

Ω

(
|∇Qn+1|2 − |∇Pn+1|2

)
tr(R̄n+1) dx

= −ζ∥∇R̄n+1∥2L2 + I1 + · · ·+ I7 (2.28)

Note that both Pn+1 and Qn+1 satisfy (2.16)-(2.17) and (2.20). Hence

I1 + I2 ≤ −a∥R̄n+1∥2L2 + c∥R̄n+1∥2L2

(
∥Qn+1∥2L∞ + ∥Qn+1∥L∞∥Pn+1∥L∞ + ∥Pn+1∥2L∞

)

≤ c
(
3ε2 − a

c

)
∥R̄n+1∥2L2

≤ 4cε2∥R̄n+1∥2L2 ,

where we used (2.18) to derive the last inequality.

By using (2.5), Ladyzhenskaya’s inequality, Gagliardo-Nirenberg inequality and classical elliptic

PDE theory, we have

I3 ≤ L
[
∥R̄n+1∥2L4∥∇Qn+1∥2L4 + ∥Pn+1∥L∞

(
∥∇Qn+1∥L4 + ∥∇Pn+1∥L4

)
∥∇R̄n+1∥L2∥R̄n+1∥L4

]

≤ CL∥R̄n+1∥L2∥∇R̄n+1∥L2∥Qn+1∥L∞
(
∥∆Qn+1∥L2 + ∥Qn+1∥L2 + ∥Q̃∥

H
3
2 (∂Ω)

)

+ CL∥Pn+1∥L∞∥R̄n+1∥
1
2
L2∥∇R̄n+1∥

3
2
L2∥Qn+1∥

1
2
L∞
(
∥∆Qn+1∥L2 + ∥Qn+1∥L2 + ∥Q̃∥

H
3
2 (∂Ω)

) 1
2

+ CL∥Pn+1∥L∞∥R̄n+1∥
1
2
L2∥∇R̄n+1∥

3
2
L2∥Pn+1∥

1
2
L∞
(
∥∆Pn+1∥L2 + ∥Pn+1∥L2 + ∥Q̃∥

H
3
2 (∂Ω)

) 1
2

≤ CL∥R̄n+1∥L2∥∇R̄n+1∥L2∥Q0∥L∞
(
∥∆Qn+1∥L2 + 1

)

+ CL∥R̄n+1∥
1
2
L2∥∇R̄n+1∥

3
2
L2∥Q0∥

3
2
L∞
(
∥∆Qn+1∥L2 + ∥∆Pn+1∥L2 + 1

) 1
2

≤ Cε∥R̄n+1∥L2∥∇R̄n+1∥L2

(
∥∆Qn+1∥L2 + 1

)
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+ Cε
3
2 ∥R̄n+1∥

1
2
L2∥∇R̄n+1∥

3
2
L2

(
∥∆Qn+1∥L2 + ∥∆Pn+1∥L2 + 1

) 1
2

≤ ζ

8
∥∇R̄n+1∥2L2 + Cε

(
∥∆Qn+1∥2L2 + ∥∆Pn+1∥2L2 + 1

)
∥R̄n+1∥2L2 .

Similarly,

I4 ≤ L∥∇R̄n+1∥L2∥R̄n+1∥L4

(
∥∇Qn+1∥L4 + ∥∇Pn+1∥L4

)
∥Qn∥L∞

≤ ζ

8
∥∇R̄n+1∥2L2 + Cε

(
∥∆Qn+1∥2L2 + ∥∆Pn+1∥2L2 + 1

)
∥R̄n+1∥2L2 .

We derive from (2.5) that

I5 ≤ 2|L4|∥Qn∥L∞∥∇R̄n+1∥2L2 ≤ 2|L4|ε ∥∇R̄n+1∥2L2 ≤ ζ

8
∥∇R̄n+1∥2L2

We can control I6 and I7 in a manner similar for I3, namely:

I6 + I7 ≤ 2|L4|∥∇R̄n+1∥L2∥R̄n+1∥L4

(
∥∇Qn+1∥L4 + ∥∇Pn+1∥L4

)

≤ ζ

8
∥∇R̄n+1∥2L2 + Cε

(
∥∆Qn+1∥2L2 + ∥∆Pn+1∥2L2 + 1

)
∥R̄n+1∥2L2 .

After summing up the above inequalities in (2.28), we get

∥R̄n+1∥2L2

∆t
≤ −ζ

2
∥∇R̄n+1∥2L2 + 4cε2∥R̄n+1∥2L2 + Cε

(
∥∆Qn+1∥2L2 + ∥∆Pn+1∥2L2 + 1

)
∥R̄n+1∥2L2 .

(2.29)

Finally, we derive from (2.17) and the above inequality that

∥R̄n+1∥2L2 ≤ 4cε2∥R̄n+1∥2L2 + Cε(2CT +∆t)∥R̄n+1∥2L2 ≤ 1

2
∥R̄n+1∥2L2

provided ε is chosen to be sufficiently small. Therefore we conclude

R̄n+1 ≡ 0.

2.2 Convergence

Next we shall construct a family of approximate solutions using linear interpolation in time. The

above a priori estimates for the set of discrete solutions allow us to obtain the existence of a

time-continuous limit function which we will show to be a solution of the original PDE system

(1.9)-(1.10).

Let us fix the initial data Q0 and step size h
def
= ∆t and define a piecewise linear interpolation

t ∈ [0, T ) → Qh(·, t) as

Qh(x, t) = Qn(x) +
Qn+1(x)−Qn(x)

h
(t− nh), ∀x ∈ Ω, nh ≤ t < (n+ 1)h, 0 ≤ n <

[T
h

]
.

(2.30)
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Based on equation (2.1) and the above construction (2.30), we know that Qh satisfies

∂tQ
ij
h (t, x) = ζ∆Qij

h (x, nh)− aQij
h (x, nh)

− c|Qh(x, nh)|2Qij
h (x, nh)− L

[
Qij

h (nh, x)−Qij
h (nh− h, x)

]
|∇Qh(nh, x)|2

+ L4

{
2∂k
[
Qlk

h (nh− h, x)∂lQ
ij
h (x, nh)

]
− ∂iQ

kl
h (x, nh)∂jQ

kl
h (x, nh) +

|∇Qh(x, nh)|2

2
δij
}
,

∀x ∈ Ω, (n− 1)h ≤ t < nh, 1 ≤ n ≤
[T
h

]
(2.31)

We collect from Proposition 2.2 and equation (2.31) the following uniform bounds

∥∇Qh(·, t)∥2L2(Ω) ≤ C∆t+ C∥∆Q0∥2L2(Ω)∆t+ ∥∇Q0∥2L2(Ω), ∀t ∈ (0, T ), (2.32)
∫ T

0
∥∆Qh(·, t)∥2L2(Ω)dt ≤ CT + C∥∆Q0∥2L2(Ω)∆t+ ∥∇Q0∥2L2(Ω), (2.33)

∫ T

0
∥∂tQh(·, t)∥2L2(Ω)dt ≤ CT + C. (2.34)

In the above C > 0 is a generic constant that does not depend on h.

As a consequence, as h → 0, we have from Aubin-Lions Lemma (see [28]) that the following

results hold.

Theorem 2.2. (Main result) Let Q0, Q̃ ∈ C2+α(Ω̄ → R2×2). Suppose ∥Q0∥C0(Ω̄), ∥Q̃∥C0(∂Ω) and
a−

c are sufficiently small and L satisfies (2.4). Then the numerical scheme (2.1)-(2.2) admits unique

solutions Qn for n ≥ 1, and the piecewise linear interpolation Qh(t) of the numerical solution given

in (2.30) converges to an exact solution of (1.9)-(1.10), i.e.

Qh(·, t) → Q(·, t) strong in L2(0, T ;H1(Ω)),

Qh(·, t) → Q(·, t) weakly in L∞(0, T ;H1(Ω)) ∩ L2(0, T ;H2(Ω)),

where Q(·, t) solves

∂tQ
ij = ζ∆Qij −

[
a+ c tr(Q2)

]
Qij + L4

{
2∂k
(
Qlk∂lQ

ij
)
− ∂iQ

kl∂jQ
kl +

|∇Q|2δij

2

}
,

Q|∂Ω = Q̃, Q(0, x) = Q0(x)

in the weak sense defined in Definition 2.1 below.

We can also check directly that the limit solution Q always lies in the Q-tensor space S(2),

provided Q0, Q̃ ∈ S(2).

Next, we recall the notion of weak solutions discussed in [15]

Definition 2.1. For any T ∈ (0,+∞), a function Q satisfying

Q ∈ L∞(0, T ;H1∩L∞)∩L2(0, T ;H2), ∂tQ ∈ L2(0, T ;L2), and Q ∈ S(2), a.e. in Ω×(0, T ),
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is called a weak solution of the problem (1.9)-(1.10), if it satisfies the initial and boundary condi-

tions (1.10), and we have

−
∫

Ω×[0,T ]
Q : ∂tRdxdt =− 2L1

∫

Ω×[0,T ]
∂kQ : ∂kRdxdt −

∫

Ω×[0,T ]

[
a+ ctr(Q2)

]
Q : Rdxdt

− 2(L2 + L3)

∫

Ω×[0,T ]
∂kQik∂jRij dx dt+ (L2 + L3)

∫

Ω×[0,T ]
∂kQlk∂lRii dx dt

− 2L4

∫

Ω×[0,T ]
Qlk∂kQij∂lRij dx dt− L4

∫

Ω×[0,T ]
∂iQkl∂jQklRij dx dt

+
L4

2

∫

Ω×[0,T ]
|∇Q|2Rii dx dt−

∫

Ω
Q0 : R(0) dx.

Here R ∈ C∞
c

(
[0, T ) ×Ω → R2×2

)
is arbitrary.

Summing up the above, we obtained the well-posedness result for (1.9)-(1.10), which was also

established in [5, 15] by using completely different approaches.

Corollary 2.1. Let Q0, Q̃ ∈ C2+α(Ω̄). For any fixed T > 0, suppose ∥Q0∥L∞(Ω), ∥Q̃∥L∞(∂Ω) and
a−

c are sufficiently small. Then there exists a unique solution Q(x, t) to the problem (1.9)-(1.10),

with the following properties:

Q ∈ L∞(0, T ;L∞(Ω) ∩H1(Ω)) ∩ L2(0, T ;H2(Ω)), and Q(x, t) ∈ S(2), ∀(x, t) ∈ Ω× [0, T ].

Further, ∥Q∥L∞(Ω) always stays small during evolution.

It is worth mentioning that the regularity in Corollary 2.1 can be improved using bootstrap

argument so that the weak solution Q is indeed a classical solution.

Next let us recall Lemma 3.2 in [15] that relates to the continuous dependence on the initial

data.

Lemma 2.2. Let

Qi ∈ L∞(0, T ;L∞(Ω) ∩H1(Ω)) ∩ L2(0, T ;H2(Ω)) (i = 1, 2)

be two global weak solutions to the problem (1.9)-(1.10) on (0, T ), with initial data Q1, Q2 ∈ L∞(Ω)∩
H1(Ω). Suppose ∥Qi∥L∞(Ω)(i = 1, 2) are sufficiently small. Then for any t ∈ (0, T ), we have

∥(Q1 −Q2)(t)∥L2(Ω) ≤ CeCt∥Q01 −Q02∥L2(Ω), (2.35)

where C > 0 is a constant that depends on Ω, Q0i (i = 1, 2), Q̃ and the coefficients of the system,

but not t.

By virtue of Lemma 2.2, we may relax the regularity assumption on the initial data Q0, and

henceforth we state the existence result as follows
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Corollary 2.2. Let Q0 ∈ H1(Ω)∩L∞(Ω), Q̃ ∈ C2+α(Ω̄). For any fixed T > 0, suppose ∥Q0∥L∞(Ω),

∥Q̃∥L∞(∂Ω) and a−

c are sufficiently small. Then there exists a unique global weak solution Q(x, t)

to the problem (1.9)-(1.10) that satisfies

Q ∈ L∞(0, T ;L∞(Ω) ∩H1(Ω)) ∩ L2(0, T ;H2(Ω)), Q(x, t) ∈ S(2), ∀(x, t) ∈ Ω× [0, T ]

Further, the smallness of the L∞ norm of Q is preserved during evolution

Proof. For Q0 ∈ L∞(Ω)∩H1(Ω), let us use the standard mollifier to establish Qε,0 ∈ C2+α (ε → 0)

with Qε,0 → Q0 in H1(Ω), and ∥Qε,0∥L∞ ≤ ∥Q0∥L∞ . Then Qε(t) is the corresponding solution

with initial data Qε,0. As Qε ∈ L(0, T ;L∞ ∩ H1) ∩ L2(0, T ;H2) and such bounds depend on

the L∞ ∩ H1 bound of Q0 only, Qε is a Cauchy sequence in L∞(0, T ;L2(Ω)). Hence we define

Q(x, t) = lim
ε→0

Qε(x, t) that solves the equation weakly. Then we may proceed as before and the

proof is complete.

Remark 2.2. It is pointed out in Theorem 2.2 that the initial data Q0 of the evolution problem

(1.9)-(1.10) can be relaxed from C2+α to H1 ∩ L∞. Regarding the boundary data Q̃, however, it

seems that we cannot relax its regularity because of the Schauder estimates used in Proposition

2.1. On the other hand, one may easily find that it suffices to assume Q̃ ∈ C0(∂Ω) to perform the

maximum principle argument in Lemma 2.1.

3 Numerical experiments

We have shown in the previous section that the proposed numerical scheme preserves the symmetric

and traceless properties of the tensor Qn (n ≥ 1), provided the initial state Q0 and boundary value

are in the Q-tensor space S(2). By parameterizing Q as

Q(·, t) =
(
p(·, t) q(·, t)
p(·, t) −q(·, t)

)

, Q(·, 0) = Q0 =

(
p0 q0

p0 −q0

)

, (3.1)

the numerical scheme (2.1)-(2.2) can be rewritten as:

pn+1 − pn

∆t
=ζ∆pn+1 − apn+1 − 2c(|pn+1|2 + |qn+1|2)pn+1 − 2L(pn+1 − pn)(|∇pn+1|2 + |∇qn+1|2)

+ 2L4
(
pn∂xxp

n+1 − pn∂yyp
n+1 + 2qn∂xyp

n+1 + ∂xp
n∂xp

n+1 − ∂yp
n∂yp

n+1
)

+ L4
(
2∂xq

n∂yp
n+1 + 2∂yq

n∂xp
n+1 + |∂ypn+1|2 + |∂yqn+1|2 − |∂xpn+1|2 − |∂xqn+1|2

)
,

qn+1 − qn

∆t
=ζ∆qn+1 − aqn+1 − 2c(|pn+1|2 + |qn+1|2)qn+1 − 2L(qn+1 − qn)(|∇pn+1|2 + |∇qn+1|2)

+ 2L4
(
pn∂xxq

n+1 − pn∂yyq
n+1 + 2qn∂xyq

n+1 + ∂xp
n∂xq

n+1 − ∂yp
n∂yq

n+1
)

+ 2L4
(
∂xq

n∂yq
n+1 + ∂yq

n∂xq
n+1 − ∂xp

n+1∂yp
n+1 − ∂xq

n+1∂yq
n+1
)
.

We now describe briefly our numerical approach. For simplicity of implementation, we consider

the periodic boundary conditions and use the Fourier spectral method [12] for the space vari-

able. Thus at each time step, we have a coupled nonlinear system for the Fourier approximation of
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Figure 1: Temporal error e2(t = 0.5) (left) and e∞(t = 0.5) (right) for Example 1.

(pn+1, qn+1), which will be solved by using the Newton iteration method. At each Newton iteration,

we need to solve a coupled linearized system. These linearized systems always have non-constant co-

efficients that make a direct solution by Fourier spectral method difficult and expensive. Therefore,

we solve them by using the preconditioned BiCGSTAB method with a preconditioner coming from

a suitable linear system with constant coefficients for which the Fourier spectral method reduces to

a diagonal system. Hence, the cost of each BiCGSTAB iteration is simply a matrix-vector product

which can be done in O(N2 logN) (N being the number of modes in each direction) operations

with a pseudo-spectral matrix-free approach using FFT [12,26].

We now present some numerical results obtained by using the above approach.

Example 1. (Accuracy test) We set Ω = [−2, 2] × [−2, 2] and take the initial data to be

p0(x) = sin(πx1/2) sin(πx2/2), q0(x) = cos(πx1/2) cos(πx2/2), x = (x1, x2)
T ∈ Ω. (3.2)

The other parameters are given as

ζ = 2, a = 0.5, c = 4, L4 = 0.1. (3.3)

Since we do not know the explicit form of the exact solution, we take the ‘reference’ solution

(p(·, tn), q(·, tn)) to be the numerical solution obtained by using the proposed scheme with the

stabilizing constant L = 0.5, space mesh size he = 1/32 which well resolves the solution, and a

small time step τe = 10−4.

We first look at the the temporal errors. We take the space mesh size h = 1/32 such that the

spatial errors are negligible. Let (pnτ , q
n
τ ) be the numerical approximations obtained by our scheme

17
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Figure 2: (Example 2) Orientation of liquid crystal at different time t.

at t = tn with h = 1/32 and time step τ , and we introduce the L2 and L∞ error functions as

e2(tn) =
√

∥pnτ − pnτe∥2L2 + ∥qnτ − qnτe∥2L2 , e∞(tn) = ∥
√

|pnτ − pnτe |2 + |qnτ − qnτe |2∥∞.

Fig. 1 shows the temporal errors for different stabilizing constant L. It is clear that the scheme

is first order accurate in time.

Example 2. We choose Ω = [−2, 2]× [−2, 2] with periodic boundary conditions and ζ = 0.4, a =

−2, c = 1, L4 = 0.08, L = 0.1. We set the initial state

Q0(x) = s0(x)
(
2n⃗0 ⊗ n⃗0 − I2

)
, (3.4)
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Figure 3: (Example 3) Orientation of liquid crystal at different time t.

with s0(x) = 0.1 and

n⃗0(x) =

{
(1, 0)t, x ∈ [−1, 1] × [−1, 1];

(0, 1)t, otherwise;
(3.5)

being the unit vector in R2 representing the direction of the liquid crystal at position x.

Example 3. We choose the same parameters as in Example 2 but with the initial state

Q0(x) = s0(x)
(
2n⃗0 ⊗ n⃗0 − I2

)
, (3.6)
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Figure 4: Evolutions of |Q|2 and the energy for Examples 2& 3.

with s0(x) = 0.1 and

n⃗0(x) =

{
(1, 0)t, x ∈ [−1.5, 1.5] × [−1.5, 1.5];

(0, 1)t, otherwise.
(3.7)

In the computations for Examples 2 and 3, we choose τ = 0.0025 and h = 1/32. Figs. 2 and 3

show the orientation of the liquid crystal during the time evolution. We observe from Fig. 2 that

the final steady states depend on the initial data. For Example 2 (cf. Fig. 2), initially there are

more vertical molecules than horizontal molecules. The set with horizon molecules shrinks with

time, and the liquid crystal directions eventually approach to the uniform vertical configuration.

On the other hand, for Example 3 (cf. Fig. 3), there are more horizontal molecules than vertical

molecules at t = 0. The set of horizontal molecules expands towards boundary while its shape

oscillates, and eventually and the liquid crystal directions eventually approach to the uniform

horizontal configuration.

Next, we examine the time evolution of L∞ norm of |Q|2 and bulk energy Fbulk (1.4), see

Fig. 4. We observe that, when the L∞ bound of the Q-tensor order parameter is sufficiently small,

the elliptic part in the equation will force the system approach to a uniform state, and |Q|2 will

approach to the minimizer of the bulk energy Fbulk (1.4), which is constant 2. In all our numerical

results, the L∞ norm of the numerical solutions remains to be small for small initial data, as proved

in the analysis.

Finally we examine the computational effectiveness of our approach by looking at the conver-

gences of Newton iteration and total BiCGSTAB iterations at each time step during the evolution

of Example 2. Fig. 5 displays the number of Newton iterations and total BiCGSTAB iterations

per time step, with tolerance 10−12 for the Newton iterations and 10−10 for the BiCGSTAB itera-
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Figure 5: Numbers of Newton iteration and BiCGSTAB iterations at each time step for Example

2 with stabilizing constant L = 0.1 (left) and L = 10 (right). The tolerance of absolute error for

Newton iteration is 10−12 (measured in maximum norm of the residue) and the tolerance of relative

error for BiCGSTAB is 10−10 (measured in l2 norm of the residue).

tions. We observe that the number of Newton iterations per time step ranges between 1-5, and the

total BiCGSTAB iterations per time step ranges between 2-11, which indicates that, on average,

the BiCGSTAB converges in just 2-3 iterations for each linearized system. These results indicate

that our numerical approach is very efficient.

4 Conclusion

In this paper, we proposed an unconditionally stable numerical scheme to solve a 2D Q-tensor

model for liquid crystal, and established its unique solvability and convergence. As a byproduct of

our analysis, we also established the well-posedness of the original PDE system for the 2D Q-tensor

model, which has been shown previously with completely different approaches.

The main difficulty in the analysis came from an unusual cubic L4 term in the elastic energy,

which made the free energy unbounded from below and caused great challenges in both analysis and

computation. By adding a stabilized term in our scheme, we were able to show that the L∞ norm

of the numerical solution can be kept small which guaranteed the stability and the well-posedness.

Numerical tests showed that the scheme is indeed first order accurate for a wide range of stabilizing

constants, and produces physically consistent numerical simulations.

We only discussed a 2D Q-tensor model in this paper. Extensions to the 3D case, as well as the

full dynamical model coupled with Navier-Stokes equations entail significant analytical difficulties,
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and they will be considered in our future work.
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