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Abstract. How to develop efficient numerical schemes while preserving the energy stability at the discrete level is
a challenging issue for the three component Cahn-Hillard phase-field model. We develop in this paper first and second
order temporal approximation schemes based on the “Invariant Energy Quadratization” method, where all nonlinear
terms are treated semi-explicitly. Consequently, the resulting numerical schemes lead to a symmetric positive definite
linear system to be solved at each time step. We rigorously prove that the proposed schemes are unconditional energy
stable. Various 2D and 3D numerical simulations are presented to demonstrate the stability and the accuracy of the
schemes.

Key words. Phase-field model; Chan-Hilliard, Three phase; Unconditional Energy Stability; Invariant Energy
Quadratization.

1. Introduction. The phase-field (i.e. the diffuse-interface) approach is a robust modeling ap-
proach to simulate the free interface problem (cf. [?,?,?,?,?,?,?,?,?,?,?], and the references therein).
Its essential idea is to use one (or more) continuous phase-field variable(s) to describe different phases
in the multi-components system, and represents the interfaces by thin, smooth transition layers. The
constitutive equations for those phase-field variables can be derived from the energetic variational for-
malism, the governing system of equations is thereby well-posed and thermo-dynamically consistent.
Consequently, one can carry out mathematical analyses to show solution existence and uniqueness in
appropriate functional spaces, and to develop convergent numerical schemes.

For the two phase system, the commonly used free energy for the system consists of (i) a double-
well bulk part which promotes either of the two phases in the bulk, yielding a hydrophobic contribution
to the free energy; and (ii) a conformational capillary entropic term that promotes hydrophilicity in
the multiphase material system. The competition between the hydrophilic and hydrophobic part in
the free energy forms the mechanism for the coexistence of two distinctive phases in the two-phase
system. The corresponding binary system can be modeled either by the Allen–Cahn equation (second
order) or the Cahn–Hilliard equation (fourth order). For both of these two models, there have been
many theoretical analysis, algorithm developments and numerical simulations (cf. [?,?,?,?]).

The generalization from the two-phase system to multi-phases have been studied by many (cf.
[?,?,?,?,?,?,?,?,?,?,?,?,?]). Specifically, for the system with three components, the general framework
is to adopt three independent phase variables (c1, c2, c3) while imposing a hyperplane link condition
among the three variables (c1 + c2 + c3 = 1). The free energy is simply a summation of the original
double-well energy for each phase variable [?, ?, ?]. Moreover, in order to ensure the boundedness
(from below) of the free energy, especially for the total spreading case where one of the coefficients
for the bulk energy becomes negative, an extra sixth order polynomial term is needed [?, ?], which
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couples the three phase variables altogether.
In general, it is very challenging to develop energy stable schemes to solve the three components

Cahn-Hilliard phase-field system, since all three phase variables are nonlinearly coupled. We emphasize
that the preservation of energy stability laws is critical for numerical methods to capture the correct
long time dynamics of the system. Furthermore, the energy-law preserving schemes provide flexibility
for dealing with stiffness issue in phase-filed models. Simple fully implicit or semi-implicit schemes
often lead to quite severe stability conditions so they are not efficient in practice [?,?,?,?,?].

Although a variety of numerical algorithms have been developed for the three phase Cahn-Hilliard
model, most of the existing methods are either first-order accurate in time, and/or are not energy
stable. We refer to [?] for a summary on recent advances about the three-phase models and their
numerical approximations. In particular, the authors of [?] concluded that (i) the fully implicit
discretization of the six-order polynomial term leads to non convergence of the Newton linearization
method for the total spreading case; (ii) it is questionable to establish convex-concave decomposition
for the six order polynomial term; and (iii) A semi-implicit scheme is the best choice if it can preserve
the energy dissipation law (a desired property known as unconditionally energy stable) for any time
step, and the existence and the convergence can be thereby proved. However, the semi-implicit schemes
proposed in [?] are nonlinear, thus they require some efficient iterative solvers in the implementations.

The main focus of this paper is to develop linear and unconditionally energy stable schemes to
solve the three component Cahn-Hilliard system. Instead of using convex splitting, or various tricky
Taylor expansions to discretize the nonlinear potentials, we adopt the Invariant Energy Quadratization
(IEQ) approach, where we introduce some nonlinear transformations to enforce the free energy density
as an invariant, quadratic functionals in terms of new, auxiliary variables. The IEQ method has been
successfully applied in the context of other models in the authors’ other work, for example, the
surfactant model, crystal model, or vesicle model, (cf. [?,?,?,?,?,?]). However, application of IEQ
method to the three component model is faced with new challenges due to the nonlinearities in the
Lagrange multiplier term, and the sixth order polynomial potential.

The essential idea of the IEQ method is to transform the free energy into a quadratic form (since
the nonlinear potential is usually bounded from below) of a new variable via a change of variables.
The new, equivalent system still retains a similar energy dissipation law in terms of the new variable.
For the time-continuous case, the energy law of the new reformulated system is equivalent to the
energy law of the original system. One great advantage of such reformulation is that all nonlinear
terms can be treated semi-explicitly, which in turn leads to a linear system. Moreover, the resulting
linear system is symmetric positive definite, thus it can be solved efficiently with simple iterative
methods such as CG or other Krylov subspace methods. Using this new strategy, we develop a series
of linear and energy stable numerical schemes, without introducing artificial stabilizers as in [?,?] or
using convex splitting (cf. [?,?,?,?]).

In summary, the new numerical schemes that we develop in this paper possess the following
properties: (i) the schemes are accurate (up to second order in time); (ii) they are unconditionally
energy stable ; and (iii) they are efficient and easy to implement (lead to symmetric positive definite
linear system at each time step). To the best of our knowledge, the proposed schemes are the first such
schemes for solving the three-phase Cahn-Hilliard phase-field system that can have all these desired
properties.

The rest of the paper is organized as follows. In Section 2, we give a brief introduction of the
model. In Section 3, we construct numerical schemes and prove their unconditional energy stability
and solvability in the time discrete case. In Section 4, we conduct numerical convergence tests and
present various numerical simulations of dendritic crystal growth in 2D and 3D to demonstrate the
accuracy and efficiency of the proposed schemes. Finally, some concluding remarks are presented in
Section 5.
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2. Model System. We now introduce the three component Cahn-Hilliard phase-field model
proposed in [?, ?]. Let Ω be a smooth, open bounded, connected domain in Rd, d = 2, 3. Let ci
(i = 1, 2, 3) be the i− th phase function (or order parameter) which represents the volume fraction of
the i−th component in the mixture, i.e.,

(2.1) ci =

{
1 inside the i-th component,

0 outside the i-th component.

In the phase-field framework, a thin (of thickness ε) but smooth layer is used to connect between the
interface between 0 and 1. The three unknowns c1, c2, c3 are linked though the relationship:

c1 + c2 + c3 = 1.(2.2)

This is the link condition for the vector c = (c1, c2, c3), where it belongs to the hyperplane

S = {(c1, c2, c3) ∈ R3, c1 + c2 + c3 = 1}.(2.3)

In the two-phase model, the free energy of the mixture is as follows,

Ediph(c) =

∫
Ω

(3

4
σε|∇c|2 + 12

σ

ε
c2(1− c)2

)
dx,(2.4)

where σ is the surface tension parameter, the first term contributes to the “hydro-philic” type (ten-
dency of mixing) of interactions between the materials and the second part, the double well bulk energy
term represents the “hydro-phobic” type (tendency of separation) of interactions. As the consequence
of the competition between the two types of interactions, the equilibrium configuration will include
a diffusive interface with thickness proportional to the parameter ε; and, as ε approaches zero, we
expect to recover the sharp interface separating the two different materials (cf., for instance, [?,?,?]).

There exist several generalizations from the two-phase model to the three-phase model [?,?,?].
we adopt below the approach in [?] where the free energy is defined as:

Etriph(c1, c2, c3) =

∫
Ω

(3

8
Σ1ε|∇c1|2 +

3

8
Σ2ε|∇c2|2 +

3

8
Σ3ε|∇c3|2 +

12

ε
F (c1, c2, c3)

)
dx,(2.5)

To be algebraically consistent with the two-phase systems, surface tensions σ12, σ13, σ23 should
verify the following conditions:

Σi = σij + σik − σjk, i = 1, 2, 3.(2.6)

The nonlinear potential F (c1, c2, c3) is:

F (c1, c2, c3) = σ12c
2
1c

2
2 + σ13c

2
1c

2
3 + σ23c

2
2c

2
3 + c1c2c3(Σ1c1 + Σ2c2 + Σ3c3) + 3Λc21c

2
2c

2
3.(2.7)

Since c1, c2, c3 satisfy the hyperplane link condition (2.2), the free energy can be rewritten as

F (c1, c2, c3) = F0(c1, c2, c3) + P (c1, c2, c3),(2.8)

where

F0(c1, c2, c3) =
Σ1

2
c21(1− c1)2 +

Σ2

2
c22(1− c2)2 +

Σ3

2
c23(1− c3)2,

P (c1, c2, c3) = 3Λc21c
2
2c

2
3,

(2.9)
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and Λ is a non negative constant.
Therefore, the time evolution of ci is governed by the gradient of the energy Etriph with respect

to the H−1(Ω) gradient flow,

cit =
M0

Σi
∆µi,(2.10)

µi = −3

4
εΣi∆ci +

12

ε
∂iF + β, i = 1, 2, 3,(2.11)

with the initial condition

ci|(t=0) = c0i , i = 1, 2, 3, c01 + c02 + c03 = 1,(2.12)

where β is the Lagrange multiplier to ensure the hyperplane link condition (2.2), that can be derived
as

β = −4ΣT
ε

(
1

Σ1
∂1F +

1

Σ2
∂2F +

1

Σ3
∂3F ),(2.13)

with

3

ΣT
=

1

Σ1
+

1

Σ2
+

1

Σ3
.(2.14)

we consider in this paper either of the two type boundary conditions below:

(i) all variables are periodic, or (ii) ∂nci|∂Ω = ∇µi · n|∂Ω = 0, i = 1, 2, 3,(2.15)

where n is the unit outward normal on the boundary ∂Ω.
It is easily seen that the three chemical potentials (µ1, µ2, µ3) are linked through the relation

µ1

Σ1
+
µ2

Σ2
+
µ3

Σ3
= 0.(2.16)

Remark 2.1. In the physical literature, the coefficient Σi is called the spreading coefficient of the
phase i at the interface between phases j and k. Since Σi is determined by the surface tensions σi,j,
it might not be always positive. If Σi > 0, the spreading is said to be “partial”, and if Σi < 0, it is
called “total”.

The following lemmas hold (cf. [?]):

Lemma 2.1. There exists Σ > 0 such that

Σ1|ξ1|2 + Σ1|ξ1|2 + Σ1|ξ1|2 ≥ Σ
(
|ξ1|2 + |ξ2|2 + |ξ3|2

)
, ∀ξ1 + ξ2 + ξ3 = 0,(2.17)

if and only if the following condition holds:

Σ1Σ2 + Σ1Σ3 + Σ2Σ3 > 0,Σi + Σj > 0,∀i 6= j.(2.18)

Lemma 2.2. Let σ12, σ13 and σ23 be three positive numbers and Σ1,Σ2 and Σ3 defined by (2.6).
For any Λ > 0, the bulk free energy F (c1, c2, c3) is bounded from below if c1, c2, c3 is on the hyperplane
S in 2D. Furthermore, the lower bound only depends on Σ1,Σ2,Σ3 and Λ.

Remark 2.2. From Lemma 2.1, when (2.18) holds, the summation of the gradient entropy term
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is bounded from below since ∇(c1 + c2 + c3) = 0, i.e.,

Σ1‖∇c1‖2 + Σ2‖∇c2‖2 + Σ3‖∇c3‖2 ≥ Σ(‖∇c1‖2 + ‖∇c2‖2 + ‖∇c3‖2) ≥ 0.(2.19)

Remark 2.3. The bulk part energy F (c1, c2, c3) defined in (2.8) has to be bounded from below as
well. For partial spreading case (Σi > 0∀i), one can drop the six order polynomial term by assuming
Λ = 0 since F0(c1, c2, c3) ≥ 0 is naturally bounded from below. For the total spreading case, Λ has to
be non zero. Moreover, to ensure the non-negativity for F , Λ has to be large enough.

For 3D case, it is shown in [?] that the bulk energy F is bounded from below when P (c1, c2, c3)
takes the following form:

P (c1, c2, c3) = 3Λ(c21c
2
2c

3
3)(φα(c1) + φα(c2) + φα(c3))(2.20)

where φα(x) = 1
(1+x2)α with 0 < α ≤ 8

17 .

Since (2.9) is commonly used in literature [?,?], we adopt it as well for convenience. However,
the numerical schemes we developed in this paper can deal with either (2.9) or (2.20).

Remark 2.4. The system (2.10)-(2.11) is equivalent to the following system with two order pa-
rameters, 

cit =
M0

Σi
∆µi,

µi = −3

4
εΣi∆ci +

12

ε
∂iF + β, i = 1, 2,

c3 = 1− c1 − c2,
µ3

Σ3
= −(

µ1

Σ1
+
µ2

Σ2
).

(2.21)

We omit the detailed proof since it is quite similar to Theorem 3.1 in section 3.

The model equation (2.10)-(2.11) follows the dissipative energy law. More precisely, by taking
the L2 inner product of (2.10) with −µi, and of (2.11) with cit, and perform integration by parts, we
obtain

−(cit, µi) =
M0

Σi
‖∇µi‖2,(2.22)

(µi, cit) =
3

4
εΣi(∇ci, ∂t∇ci) +

12

ε
(∂iF, cit) + (β, cit).(2.23)

Taking summation of the two equalities for i = 1, 2, 3, and notice that (β, (c1+c2+c3)t) = (β, (1)t) = 0,
we obtain the energy dissipative law as

d

dt
Etriph(c1, c2, c3) = −M0

( 1

Σ1
‖∇µ1‖2 +

1

Σ2
‖∇µ2‖2 +

1

Σ3
‖∇µ3‖2

)
.(2.24)

Since (µ1, µ2, µ3) satisfies the condition (2.16), if (2.18) holds, we can derive

−M0

( 1

Σ1
‖∇µ1‖2 +

1

Σ2
‖∇µ2‖2 +

1

Σ3
‖∇µ3‖2

)
≤ −M0Σ(

‖∇µ1‖2

Σ2
1

+
‖∇µ2‖2

Σ2
2

+
‖∇µ3‖2

Σ2
3

) ≤ 0.(2.25)

3. Numerical schemes. We develop in this section unconditionally energy stable and linear
numerical schemes for solving the three component phase-field model (2.10)-(2.11). To this end, the
main challenges are how to discretize: (i) the nonlinear term associated with the double well potential



6 X. YANG, J. ZHAO, Q. WANG AND J. SHEN

F0, (ii) the six order polynomial term P , (iii) the Lagrange multiplier term β especially for the total
spreading case (Σi < 0).

For the two-phase Cahn-Hilliard model, the discretization of the nonlinear, cubic polynomial term
induced from the double well potential had been well studied (cf. [?,?,?,?,?]). In summary, there are
two commonly used techniques to discretize it in order to preserve the unconditional energy stability.
The first is the so-called convex splitting approach [?], where the convex part of the potential is
treated implicitly and the concave part is treated explicitly. The convex splitting approach is energy
stable, however, it produces nonlinear schemes, thus the implementations are often complicated with
potentially high computational costs.

The second technique is the so-called stabilization approach [?, ?], where the nonlinear term is
treated explicitly. In order to preserve the energy law, a linear stabilizing term has to be added, and
the magnitude of that term usually depends on the upper bound of the second order derivative of the
G-L potential. The stabilized approach leads purely linear schemes, thus it is easy to implement and
solve. However, it appears that second order schemes based on the stabilization are only conditionally
energy stability [?]. On the other hand, the nonlinear potential may not satisfy the condition required
for the stabilization. A feasible remedy is to make some reasonable revisions to the nonlinear potential
in order to obtain a finite bound, for example, the quadratic order cut-off functions for the double well
potential (cf. [?,?,?]). Such method is particularly reliable for those models with maximum principle.
If the maximum principle does not hold, modified nonlinear potentials may lead to spurious solutions.

For the three component Cahn-Hillard model system, the above two approaches can not be easily
applied. First, even though the convex-concave decomposition can be applied to F0, it is not clear
how to deal with the sixth order polynomial term [?]. Second, it is uncertain whether the solution
of the system satisfies certain maximum principle so the condition required for stabilization is not
satisfied.

We aim to develop numerical schemes that are efficient (linear system), stable (unconditionally
energy stable), and accurate (ready for second order or even higher order in time). To this end, we
use the IEQ approach, without worrying about whether the continuous/discrete maximum principle
holds or a convexity/concavity splitting exists.

3.1. Transformed system. Since F (c1, c2, c3) is always bouned from below from Lemma 2.2
for 2D and Remark 2.3 for 3D. Therefore, we can rewrite the free energy functional F (c1, c2, c3) to
the following equivalent form

F (c1, c2, c3) = (F (c1, c2, c3) +B)−B,(3.1)

where B is some constant to ensure F (c1, c2, c3)+B > 0. Furthermore, we define an auxiliary function
as follows,

U =
√
F (c1, c2, c3) +B.(3.2)

In turn, the total free energy (2.5) can be rewritten as

Etriph(c1, c2, c3, U) =

∫
Ω

(3

8
Σ1ε|∇c1|2 +

3

8
Σ2ε|∇c2|2 +

3

8
Σ3ε|∇c3|2 +

12

ε
U2 − 12

ε
B
)
dx,(3.3)

Thus we could rewrite the system (2.10)-(2.11) to the following equivalent form:
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cit =
M0

Σi
∆µi,(3.4)

µi = −3

4
εΣi∆ci +

24

ε
HiU + β, i = 1, 2, 3,(3.5)

Ut = H1c1t +H2c2t +H3c3t,(3.6)

where

H1 =
δU

δc1
=

1

2

Σ1

2 (c1 − c21)(1− 2c1) + 6Λc1c
2
2c

2
3√

F +B
,(3.7)

H2 =
δU

δc2
=

1

2

Σ2

2 (c2 − c22)(1− 2c2) + 6Λc21c2c
2
3√

F +B
,(3.8)

H3 =
δU

δc3
=

1

2

Σ3

2 (c3 − c23)(1− 2c3) + 6Λc21c
2
2c3√

F +B
,(3.9)

β = −8

ε
ΣT (

1

Σ1
H1 +

1

Σ2
H2 +

1

Σ3
H3)U.(3.10)

The transformed system (3.4)- (3.6) in the variables c1, c2, c3, U form a closed PDE system with the
following initial conditions,  ci(t = 0) = c0i , i = 1, 2, 3,

U(t = 0) = U0 =
√
F (c01, c

0
2, c

0
3) +B.

(3.11)

Since the equations (3.6) for the new variables U is only ordinary differential equation with time, the
boundary conditions of the new system (3.4)-(3.6) are still (2.15).

Remark 3.1. The system (3.4)-(3.6) is equivalent to the following two order parameter system
cit =

M0

Σi
∆µi,

µi = −3

4
εΣi∆ci +

24

ε
HiU + β, i = 1, 2,

(3.12)

with

c3 = 1− c1 − c2,
µ3

Σ3
= −(

µ1

Σ1
+
µ2

Σ2
).

(3.13)

Since the proof is quite similar to Theorem 3.1, we omit the proof here.

We can easily obtain the energy law for the new system (3.4)-(3.6). Taking the L2 inner product
of (3.4) with −µi, of (3.5) with ∂tci, of (3.6) with − 24

ε U , taking the summation for i = 1, 2, 3, and
noticing that (β, ∂t(c1 + c2 + c3)) = 0 from Remark 3.1, we still obtain the energy dissipation law as

d

dt
Etriph(c1, c2, c3, U) = −M0

( 1

Σ1
‖∇µ1‖2 +

1

Σ2
‖∇µ2‖2 +

1

Σ3
‖∇µ3‖2

)
≤ −M0Σ0(

‖∇µ1‖2

Σ2
1

+
‖∇µ2‖2

Σ2
2

+
‖∇µ3‖2

Σ2
3

) ≤ 0.

(3.14)
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Remark 3.2. The new transformed system (3.4)- (3.6) is equivalent to the original system (2.10)-
(2.11) since (3.2) can be obtained by integrating (3.6) with respect to the time. Therefore, the energy
law (3.14) for the transformed system is exactly the same as the energy law (2.24) for the original
system.

We emphasize that we will develop energy stable numerical schemes for the new transformed
system (3.4)- (3.6). The proposed schemes will a discrete energy law corresponding to (3.14) instead
of the energy law for the original system (2.24).

Let δt > 0 denote the time step size and set tn = n δt for 0 ≤ n ≤ N with T = N δt. We also
denote by (f(x), g(x)) =

∫
Ω
f(x)g(x)dx the L2 inner product of any two functions f(x) and g(x),

and by ‖f‖ =
√

(f, f) the L2 norm of the function f(x).

3.2. First order scheme. We now present the first order time stepping scheme to solve the
system (3.4)-(3.6) where the time derivative is discretized based on the first order backward Euler
method.

Assumming that (c1, c2, c3, U)n are already calculated, we compute (c1, c2, c3, U)n+1 from the
following temporal discrete system:

cn+1
i − cni
δt

=
M0

Σi
∆µn+1

i ,(3.15)

µn+1
i = −3

4
εΣi∆c

n+1
i +

24

ε
Hn
i U

n+1 + βn+1, i = 1, 2, 3,(3.16)

Un+1 − Un = Hn
1 (cn+1

1 − cn1 ) +Hn
2 (cn+1

2 − cn2 ) +Hn
3 (cn+1

3 − cn3 ),(3.17)

where

Hn
1 =

1

2

Σ1

2 (cn1 − cn1 2)(1− 2cn1 ) + 6Λcn1 c
n
2

2cn3
2√

F (cn1 , c
n
2 , c

n
3 ) +B

,(3.18)

Hn
2 =

1

2

Σ2

2 (cn2 − cn2 2)(1− 2cn2 ) + 6Λcn1
2cn2 c

n
3

2√
F (cn1 , c

n
2 , c

n
3 ) +B

,(3.19)

Hn
3 =

1

2

Σ3

2 (cn3 − cn3 2)(1− 2cn3 ) + 6Λcn1
2cn2

2cn3√
F (cn1 , c

n
2 , c

n
3 ) +B

,(3.20)

βn+1 = −8

ε
ΣT (

1

Σ1
Hn

1 +
1

Σ2
Hn

2 +
1

Σ3
Hn

3 )Un+1.(3.21)

The initial conditions are (3.11), and the boundary conditions are

(i) all variables are periodic, or (ii) ∂nc
n+1
i |∂Ω = ∇µn+1

i · n|∂Ω = 0, i = 1, 2, 3.(3.22)

We immediately derive the following result which ensures the numerical solutions satisfy the
hyperplane condition (2.2).

Theorem 3.1. The system of (3.15)-(3.17) is equivalent to the following scheme with two order
parameters,

cn+1
i − cni
δt

=
M0

Σi
∆µn+1

i ,(3.23)

µn+1
i = −3

4
εΣ1∆cn+1

i +
24

ε
Hn
i U

n+1 + βn+1, i = 1, 2,(3.24)
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with

cn+1
3 = 1− cn+1

1 − cn+1
2 ,(3.25)

µn+1
3

Σ3
= −(

µn+1
1

Σ1
+
µn+1

2

Σ2
).(3.26)

Proof. From (3.21), we can easily show that the following indentity holds,

24

ε
(
Hn

1

Σ1
+
Hn

2

Σ2
+
Hn

3

Σ3
)Un+1 + βn+1(

1

Σ1
+

1

Σ2
+

1

Σ3
) = 0.(3.27)

• (i) We first assume that (3.23)-(3.26) are sastified, and derive (3.15)-(3.16). By taking the
summation of (3.23) for i = 1, 2, and applying (3.25) and (3.26), we obtain

cn+1
3 − cn3
δt

=
M0

Σ3
∆µn+1

3 .(3.28)

From (3.25), (3.26) and (3.27), we obtain

µn+1
3 = −Σ3(

µn+1
1

Σ1
+
µn+1

2

Σ2
)

= −Σ3

(
− 3

4
ε∆cn+1

1 − 3

4
ε∆cn+1

2 +
24

ε
(
Hn

1

Σ1
+
Hn

2

Σ2
)Un+1 + βn+1(

1

Σ1
+

1

Σ2
)
)

=
3

4
εΣ3∆cn+1

3 +
24

ε
Hn

3 U
n+1 + βn+1.

(3.29)

• (ii) We then assume that (3.15)-(3.16) are satisfied, and derive (3.23)-(3.26). By taking the
summation of (3.15) for i = 1, 2, 3, we derive

Sn+1 − Sn

δt
= M0∆Θn+1,(3.30)

where Sn = cn1 + cn2 + cn3 and Θn+1 = 1
Σ1
µn+1

1 + 1
Σ2
µn+1

2 + 1
Σ3
µn+1

3 . From (3.16) and (3.27),
we derive

Θn+1 = −3

4
ε∆Sn+1.(3.31)

By taking the L2 inner product of (3.30) with −Θn+1, of (3.31) with Sn+1 − Sn, and taking
the summation of the two equalities above, we derive

3

8
ε(‖∇Sn+1‖2 − ‖∇Sn‖2 + ‖∇Sn+1 −∇Sn‖2) + δtM0‖∇Θn+1‖2 = 0.(3.32)

Since Sn = 1, the lefthand side of (3.32) is a sum of non negative terms, thus ∇Sn+1 = 0, and
∇Θn+1 = 0, i.e., the functions Sn+1 and Θn+1 are constants. Then (3.31) leads to Θn+1 = 0,
and (3.30) leads to Sn+1 = Sn = 1. Thus we obtain (3.25). By dividing Σi for (3.16) and
taking the summation of it for i = 1, 2, 3, and applying (3.27) and (3.25), we obtain (3.26).

Note that all nonlinear coefficient Hi of the new variables U are treated explicitly. Moreover, we
can rewrite the equations (3.17) as follows:

Un+1 = Hn
1 c
n+1
1 +Hn

2 c
n+1
2 +Hn

3 c
n+1
3 +Qn1 ,(3.33)
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where Qn1 = Un −Hn
1 c
n
1 −Hn

2 c
n
2 −Hn

3 c
n
3 . Thus, the system (3.15)- (3.17) can be rewritten as

cn+1
i − cni
δt

=
M0

Σi
∆µn+1

i ,(3.34)

µn+1
i = −3

4
εΣi∆c

n+1
i +

24

ε
Hn
i (Hn

1 c
n+1
1 +Hn

2 c
n+1
2 +Hn

3 c
n+1
3 )(3.35)

+βn+1 +
24

ε
Hn
i Q

n
1 , i = 1, 2, 3,

Theorem 3.2. Assuming (2.18), the linear system (3.34)-(3.35) for the variable Φ = (cn+1
1 , cn+1

2 , cn+1
3 )T

is self-adjoint and positive definite.

Proof. Taking the L2 inner product of (3.34) with 1, we derive∫
Ω

cn+1
i dx =

∫
Ω

cni dx = · · · =
∫

Ω

c0i dx.(3.36)

Let α0
i = 1

|Ω|
∫

Ω
c0i dx, γ0

i = 1
|Ω|
∫

Ω
µn+1
i dx, and define

ĉn+1
i = cn+1

i − α0
i , µ̂

n+1
i = µn+1

i − γ0
i .(3.37)

Thus, from (3.34)-(3.35), ĉn+1
i and µ̂n+1

i are the solutions for the following equations,

Ci
M0δt

− 1

Σi
∆µi = fni ,(3.38)

µi + γ0
i = −3

4
εΣi∆Ci +

24

ε
Hn
i P

n+1
1 + βn+1 + gni ,(3.39)

where Pn+1
1 = Hn

1 C1 +Hn
2 C2 +Hn

3 C3 and

C1 + C2 + C3 = 0,

∫
Ω

Cidx = 0,

∫
Ω

µidx = 0.(3.40)

We define the inverse Laplace operator u→ v = ∆−1u by

∆v = u,

∫
Ω

vdx = 0,

with the boundary conditions (2.15).

(3.41)

Applying −∆−1 to (3.38) and using (3.39), we obtain

− Σi
M0δt

∆−1Ci −
3

4
εΣi∆Ci +

24

ε
Hn
i P

n+1
1 + βn+1 − γ0

i = −Σi∆
−1fni − gni , i = 1, 2, 3.(3.42)

We express the above linear system (3.42) as AC = b, where C = (C1, C2, C3)T .

For any Φ = (φ1, φ2, φ3)T ,Ψ = (ψ1, ψ2, ψ3)T with
∑3
i=1 φi =

∑3
i=1 ψi = 0 and

∫
Ω
φidx =∫

Ω
ψidx = 0, we can easily derive

(AΦ,Ψ) = (Φ,AΨ),(3.43)
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thus A is self-adjoint. Meanwhile, we have

(AΦ,Φ) =
1

M0δt
(Σ1(−∆−1φ1, φ1) + Σ2(−∆−1φ2, φ2) + Σ3(−∆−1φ3, φ3))

+
3

8
ε(Σ1‖∇φ1‖2 + Σ2‖∇φ2‖2 + Σ3‖∇φ3‖2) +

24

ε
‖Hn

1 φ1 +Hn
2 φ2 +Hn

3 φ3‖2
(3.44)

Let di = ∆−1φi, i.e.,

∆di = φi,

∫
Ω

didx = 0,(3.45)

with periodic boundary conditions or ∂ndi|∂Ω = 0. Therefore, we have

(−∆−1φi, φi) = ‖∇di‖2.(3.46)

Furthermore, Z = d1 + d2 + d3 satisfies

∆Z = 0,(3.47)

quad

∫
Ω

Zdx = 0,(3.48)

with periodic boundary conditions or ∂nZ|∂Ω = 0. Thus Z = d1 +d2 +d3 = 0. From (2.19), we derive

(AΦ,Φ) ≥ 1

M0δt
Σ(‖∇d1‖2 + ‖∇d2‖2 + ‖∇d3‖2) +

3

8
Σε(‖∇φ1‖2 + ‖∇φ2‖2 + ‖∇φ3‖2)

+
24

ε
‖Hn

1 φ1 +Hn
2 φ2 +Hn

3 φ3‖2 ≥ 0,

(3.49)

and (AΦ,Φ) = 0 if and only if Φ = 0. Thus we conclude the theorem.

The stability result of the first order scheme (3.15)-(3.17) is given below.

Theorem 3.3. When (2.18) holds, the first order linear scheme (3.15)-(3.17) is unconditionally
energy stable, i.e., satisfies the following discrete energy dissipation law:

1

δt
(En+1

1st − En1st) ≤ −M0Σ(
‖∇µn+1

1 ‖2

Σ2
1

+
‖∇µn+1

2 ‖2

Σ2
2

+
‖∇µn+1

3 ‖2

Σ2
3

).(3.50)

where En1st is defined by

En1st =
3

8
Σ1ε‖∇cn1‖2 +

3

8
Σ2ε‖∇cn2‖2 +

3

8
Σ3ε‖∇cn3‖2 +

12

ε
‖Un‖2 ≥ 0,∀n.(3.51)

Proof. Taking the L2 inner product of (3.15) with −δtµn+1
i , we obtain

−(cn+1
i − cni , µn+1

i ) = δt
M0

Σi
‖∇µn+1

i ‖2.(3.52)

Taking the L2 inner product of (3.16) with cn+1
i − cni and applying the following identities

2(a− b, a) = |a|2 − |b|2 + |a− b|2,(3.53)
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we derive

(µn+1
i , cn+1

i − cni ) =
3

8
εΣi(‖∇cn+1

i ‖2 − ‖∇cni ‖2 + ‖∇cn+1
i −∇cni ‖2)

+
24

ε
(Hn

i U
n+1, cn+1

i − cni ) + (βn+1, cn+1
i − cni ).

(3.54)

Taking the L2 inner product of (3.17) with 24
ε U

n+1, we obtain

12

ε

(
‖Un+1‖2 − ‖Un‖2 + ‖Un+1 − Un‖2

)
=

24

ε

((
Hn

1 (cn+1
1 − cn1 ), Un+1

)
+
(
Hn

2 (cn+1
2 − cn2 ), Un+1

)
+
(
Hn

3 (cn+1
3 − cn3 ), Un+1

))
.

(3.55)

Combinning (3.51), (3.53), taking the summation for i = 1, 2, 3 and using (3.54) and (3.25), we have

3

8
ε

3∑
i=1

Σi

(
‖∇cn+1

i ‖2 − ‖∇cni ‖2
)

+
3

8
ε

3∑
i=1

Σi‖∇cn+1
i −∇cni ‖2

+
12

ε

(
‖Un+1‖2 − ‖Un‖2

)
= −M0(

1

Σ1
‖∇µn+1

1 ‖2 +
1

Σ2
‖∇µn+1

2 ‖2 +
1

Σ3
‖∇µn+1

3 ‖2)

≤ −M0Σ(‖∇µn+1
1 ‖2 + ‖∇µn+1

2 ‖2 + ‖∇µn+1
3 ‖2).

(3.56)

Noticing that
∑3
i=1∇c

n+1
i = 0, we derive

3∑
i=1

(
Σi‖∇cn+1

i −∇cni ‖2
)
≥ Σ

3∑
i=1

(
‖∇cn+1

i −∇cni ‖2
)
≥ 0.(3.57)

Therefore, the desired result (3.49) is obtained.

3.3. Second order scheme based on Crank-Nicolson. We now present a second order time
stepping scheme to solve the system (3.4)-(3.6).

Assumming that (c1, c2, c3, U)n and (c1, c2, c3, U)n−1 are already calculated, we compute (c1, c2, c3, U)n+1

from the following temporal discrete system

cit =
M0

Σi
∆µ

n+ 1
2

i ,(3.58)

µ
n+ 1

2
i = −3

4
εΣi∆

cn+1
i + cni

2
+

24

ε
H∗i U

n+ 1
2 + βn+ 1

2 , i = 1, 2, 3,(3.59)

Un+1 − Un = H∗1 (cn+1
1 − cn1 ) +H∗2 (cn+1

2 − cn2 ) +H∗3 (cn+1
3 − cn3 ),(3.60)
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where 

Un+ 1
2 =

Un+1 + Un

2
,

c∗i =
3

2
cni −

1

2
cn−1
i ,

H∗1 =
1

2

Σ1

2 (c∗1 − c∗1
2)(1− 2c∗1) + 6Λc∗1c

∗
2

2c∗3
2√

F (c∗1, c
∗
2, c
∗
3) +B

,

H∗2 =
1

2

Σ2

2 (c∗2 − c∗2
2)(1− 2c∗2) + 6Λc∗1

2c∗2c
∗
3

2√
F (c∗1, c

∗
2, c
∗
3) +B

,

H∗3 =
1

2

Σ3

2 (c∗3 − c∗3
2)(1− 2c∗3) + 6Λc∗1

2c∗2
2c∗3√

F (c∗1, c
∗
2, c
∗
3) +B

,

βn+ 1
2 = −8

ε
ΣT (

1

Σ1
H∗1 +

1

Σ2
H∗2 +

1

Σ3
H∗3 )Un+ 1

2 .

(3.61)

The initial conditions are (3.11), and the boundary conditions are

(i) all variables are periodic, or (ii) ∂nc
n+1
i |∂Ω = ∇µn+ 1

2
i · n|∂Ω = 0, i = 1, 2, 3.(3.62)

The following theorem ensures the numerical solution (cn+1
1 , cn+1

2 , cn+1
3 ) always satisfies the hy-

perplane link condition (2.2).

Theorem 3.4. The system (3.57)-(3.59) is equivalent to the following scheme with two order
parameters,

cn+1
i − cni
δt

=
M0

Σi
∆µ

n+ 1
2

i ,(3.63)

µ
n+ 1

2
i = −3

4
εΣi∆

cn+1
i + cni

2
+

24

ε
H∗i U

n+ 1
2 + βn+ 1

2 , i = 1, 2,(3.64)

with

cn+1
3 = 1− cn+1

1 − cn+1
2 ,(3.65)

µ
n+ 1

2
3

Σ3
= −(

µ
n+ 1

2
1

Σ1
+
µ
n+ 1

2
2

Σ2
).(3.66)

Proof. The proof is omitted here since it is similar to that for Theorem 3.1.

Similar to the first orders scheme, we can rewrite the system (3.59) as follows,

Un+1 = H∗1 c
n+1
1 +H∗2 c

n+1
2 +H∗3 c

n+1
3 +Qn2 ,(3.67)

where Qn2 = Un −H∗1 cn1 −H∗2 cn2 −H∗3 cn3 . Thus, the system (3.57)- (3.59) can be rewritten as

cn+1
i − cni
δt

=
M0

Σi
∆µ

n+ 1
2

i ,(3.68)

µ
n+ 1

2
i = −3

4
εΣi∆

cn+1
i + cni

2
+

24

ε
H∗i (H∗1 c

n+1
1 +H∗2 c

n+1
2 +H∗3 c

n+1
3 )(3.69)

+βn+ 1
2 +

24

ε
H∗i Q

n
2 , i = 1, 2, 3.
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Theorem 3.5. The linear system (3.67)-(3.68) for the variable Φ = (cn+1
1 , cn+1

2 , cn+1
3 )T is self-

adjoint and positive definite.

Proof. The proof is omitted here since it is similar to that for Theorem 3.2.

The stability result of the second order Crank-Nicolson scheme (3.57)-(3.59) is given below.

Theorem 3.6. Assuming (2.18), the second order Crank-Nicolson scheme (3.57)-(3.59) is uncon-
ditionally energy stable and satisfies the following discrete energy dissipation law:

1

δt
(En+1

cn − Encn) = −M0

( 1

Σ1
‖∇µn+ 1

2
1 ‖2 +

1

Σ2
‖∇µn+ 1

2
2 ‖2 +

1

Σ3
‖∇µn+ 1

2
3 ‖2

)
≤ −M0Σ

(‖∇µn+ 1
2

1 ‖2

Σ2
1

+
‖∇µn+ 1

2
2 ‖2

Σ2
2

+
‖∇µn+ 1

2
3 ‖2

Σ2
3

)
,

(3.70)

where Encn that is defined by

Encn =
3

8
Σ1ε‖∇cn1‖2 +

3

8
Σ2ε‖∇cn2‖2 +

3

8
Σ3ε‖∇cn3‖2 +

12

ε
‖Un+1‖2 ≥ 0,∀n.(3.71)

Proof. Taking the L2 inner product of (3.57) with −δtµn+1
i , we obtain

−(cn+1
i − cni , µ

n+ 1
2

i ) = δt
M0

Σi
‖∇µn+ 1

2
i ‖2.(3.72)

Taking the L2 inner product of (3.58) with cn+1
i − cni , we obtain

(µ
n+ 1

2
i , cn+1

i − cni ) =
3

8
εΣi(‖∇cn+1

i ‖2 − ‖∇cni ‖2)

+
24

ε
(H∗i U

n+ 1
2 , cn+1

i − cni ) + (βn+ 1
2 , cn+1

i − cni ).

(3.73)

Taking the L2 inner product of (3.17) with 24
ε U

n+ 1
2 , we obtain

24

ε

(
(H∗1 (cn+1

1 − cn1 ), Un+ 1
2 ) + (H∗2 (cn+1

2 − cn2 ), Un+ 1
2 ) + (H∗3 (cn+1

3 − cn3 ), Un+ 1
2 )
)

=
12

ε
(‖Un+1‖2 − ‖Un‖2)

(3.74)

Combinning (3.71), (3.72) for i = 1, 2, 3 and (3.73), we derive

3

8
ε

3∑
i=1

Σi

(
‖∇cn+1

i ‖2 − ‖∇cni ‖2
)

+
12

ε

(
‖Un+1‖2 − ‖Un‖2

)
= −M0(

1

Σ1
‖∇µn+ 1

2
1 ‖2 +

1

Σ1
‖∇µn+ 1

2
1 ‖2 +

1

Σ1
‖∇µn+ 1

2
1 ‖2)

≤ −M0Σ0(
‖∇µn+ 1

2
1 ‖2

Σ2
1

+
‖∇µn+ 1

2
2 ‖2

Σ2
2

+
‖∇µn+ 1

2
3 ‖2

Σ2
3

).

(3.75)

Thus we obtain the desired result (3.69).

Notice that that the above scheme conserves the energy if M0 = 0 as in the continuous case. In
certain situation, additional dissipation is desirable. To this end, we develop another second order
scheme based on the backward difference formula (BDF) which introduces additional dissipation.
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3.4. Second order scheme based on BDF. Assumming that (c1, c2, c3, U)n and (c1, c2, c3, U)n−1

are already calculated, we compute (c1, c2, c3, U)n+1 from the following discrete system:

3cn+1
i − 4cni + cn−1

i

2δt
=
M0

Σi
∆µn+1

i ,(3.76)

µn+1
i = −3

4
εΣ1∆cn+1

i +
24

ε
H†i U

n+1 + βn+1, i = 1, 2, 3,(3.77)

3Un+1 − 4Un + Un−1 = H†1(3cn+1
1 − 4cn1 + cn−1

1 )(3.78)

+H†2(3cn+1
2 − 4cn2 + cn−1

2 ) +H†3(3cn+1
3 − 4cn3 + cn−1

3 ),

where 

c†i = 2cni − cn−1
i

H†1 =
1

2

Σ1

2 (c†1 − c
†
1

2
)(1− 2c†1) + 6Λc†1c

†
2

2
c†3

2√
F (c†1, c

†
2, c
†
3) +B

H†2 =
1

2

Σ2

2 (c†2 − c
†
2

2
)(1− 2c†2) + 6Λc†1

2
c†2c
†
3

2√
F (c†1, c

†
2, c
†
3) +B

H†3 =
1

2

Σ3

2 (c†3 − c
†
3

2
)(1− 2c†3) + 6Λc†1

2
c†2

2
c†3√

F (c†1, c
†
2, c
†
3) +B

βn+1 = −8

ε
ΣT (

1

Σ1
H†1 +

1

Σ2
H†2 +

1

Σ3
H†3)Un+1.

(3.79)

The initial conditions are (3.11), and the boundary conditions are

(i) all variables are periodic, or (ii) ∂nc
n+1
i |∂Ω = ∇µn+1

i · n|∂Ω = 0, i = 1, 2, 3.(3.80)

Similar to the first order scheme and the second order Crank-Nicolson scheme, the hyperplane
link condition still holds for this scheme.

Theorem 3.7. The system (3.75)-(3.77) is equivalent to the following scheme with two order
parameters,

3cn+1
i − 4cni + cn−1

i

2δt
=
M0

Σi
∆µn+1

i ,(3.81)

µn+1
i = −3

4
εΣi∆c

n+1
i +

24

ε
H†i U

n+1 + βn+1, i = 1, 2,(3.82)

cn+1
3 = 1− cn+1

1 − cn+1
2 ,(3.83)

µn+1
3

Σ3
= −(

µn+1
1

Σ1
+
µn+1

2

Σ2
).(3.84)

Proof. The proof is omitted here since it is similar to that for Theorem 3.1.

Similar to the previous cases, we can rewrite the sysytem (3.77) as

Un+1 = H†1c
n+1
1 +H†2c

n+1
2 +H†3c

n+1
3 +Qn3(3.85)
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where Qn3 = U	 −H†1c
	
1 −H

†
2c
	
2 −H

†
3c
	
3 and V 	 = 4V n−V n−1

3 for any variable V . Thus, the system
(3.15)- (3.17) can be rewritten as

3cn+1
i − 4cni + cn−1

i

2δt
=
M0

Σi
∆µn+1

i ,(3.86)

µn+1
i = −3

4
εΣi∆c

n+1
i +

24

ε
H†i (H†1c

n+1
1 +H†2c

n+1
2 +H†3c

n+1
3 )(3.87)

+βn+1 +
24

ε
H†iQ

n
3 , i = 1, 2, 3,

Theorem 3.8. The linear system (3.85)-(3.86) for the variable Φ = (cn+1
1 , cn+1

2 , cn+1
3 )T is self-

adjoint and positive definite.

Proof. The proof is omitted here since it is similar to that for Theorem 3.2.

Theorem 3.9. The second order scheme (3.75)-(3.77) is unconditionally energy stable and satis-
fies the following discrete energy dissipation law:

1

δt
(En+1

bdf − E
n
bdf ) ≤ −M0

( 1

Σ1
‖∇µn+1

1 ‖2 +
1

Σ2
‖∇µn+1

2 ‖2 +
1

Σ3
‖∇µn+1

3 ‖2
)

≤ −M0Σ
(‖∇µn+1

1 ‖2

Σ2
1

+
‖∇µn+1

2 ‖2

Σ2
2

+
‖∇µn+1

3 ‖2

Σ2
3

)
,

(3.88)

where Enbdf is defined by

Enbdf =
3

8
Σ1ε
(‖∇cn1‖2

2
+
‖2∇cn1 −∇cn−1

1 ‖2

2

)
+

3

8
Σ2ε
(‖∇cn2‖2

2
+
‖2∇cn2 −∇cn−1

2 ‖2

2

)
+

3

8
Σ3ε
(‖∇cn3‖2

2
+
‖2∇cn3 −∇cn−1

3 ‖2

2

)
+

12

ε

(‖Un‖2
2

+
‖2Un − Un−1‖2

2

)
≥ 0,∀n.

(3.89)

Proof. Taking the L2 inner product of (3.75) with −2δtµn+1
i , we obtain

−(3cn+1
i − 4cni + cn−1

i , µn+1
i ) = 2δt

M0

Σi
‖∇µn+1

i ‖2.(3.90)

Taking the L2 inner product of (3.75) with 3cn+1
i −4cni +cn−1

i , and applying the following identities
the following identity

2(3a− 4b+ c, a) = |a|2 − |b|2 + |2a− b|2 − |2b− c|2 + |a− 2b+ c|2,(3.91)

we derive

(µn+1
i , 3cn+1

i − 4cni + cn−1
i ) =

3

8
εΣi

(
‖∇cn+1

i ‖2 − ‖∇cni ‖2 + ‖2∇cn+1
i −∇cni ‖2 − ‖2∇cni −∇cn−1

i ‖2
)

+
3

8
εΣi‖∇cn+1

i − 2∇cni +∇cn−1
i ‖2

+
24

ε
(H†i U

n+1, 3cn+1
i − 4cni + cn−1

i ) + (βn+1, 3cn+1
i − 4cni + cn−1

i ).

(3.92)
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Taking the L2 inner product of (3.77) with 24
ε U

n+1, we obtain

12

ε

(
‖Un+1‖2 − ‖Un‖2 + ‖2Un+1 − Un‖2 − ‖2Un − Un−1‖2 + ‖Un+1 − 2Un + Un−1‖2

)
=

24

ε

(
(H†1(3cn+1

1 − 4cn1 + cn−1
1 ), Un+1) + (H†2(3cn+1

2 − 4cn2 + cn−1
2 ), Un+1)

+ (H†3(3cn+1
3 − 4cn3 + cn−1

3 ), Un+1)
)
.

(3.93)

Combinning (3.71), (3.72) for i = 1, 2, 3 and (3.73), we derive

3

8
ε

3∑
i=1

Σi

(
‖∇cn+1

i ‖2 + ‖2∇cn+1
i −∇cni ‖2

)
− 3

8
ε

3∑
i=1

Σi

(
‖∇cni ‖2 + ‖2∇cni −∇cn−1

i ‖2
)

+
3

8
ε

3∑
i=1

Σi

(
‖∇cn+1

i − 2∇cni +∇cn−1
i ‖2

)
+

12

ε

(
‖Un+1‖2 + ‖2Un+1 − Un‖2

)
− 12

ε

(
‖Un‖2 + ‖2Un − Un−1‖2

)
+

12

ε
‖Un+1 − 2Un + Un−1‖2

= −2δtM0

( 1

Σ1
‖∇µn+1

1 ‖2 +
1

Σ2
‖∇µn+1

2 ‖2 +
1

Σ3
‖∇µn+1

3 ‖2
)

≤ −2δtM0Σ
(‖∇µn+1

1 ‖2

Σ2
1

+
‖∇µn+1

2 ‖2

Σ2
2

+
‖∇µn+1

3 ‖2

Σ2
3

)
.

(3.94)

Since
∑3
i=1(∇cn+1

i − 2∇cni +∇cn−1
i ) = 0, from Lemma 2.1, we have

3∑
i=1

{
Σi‖∇cn+1

i − 2∇cni +∇cn−1
i ‖2

}
≥ Σ

3∑
i=1

{
‖∇cn+1

i − 2∇cni +∇cn−1
i ‖2

}
≥ 0.(3.95)

Therefore, we obtain (3.87) after we drop the unnecessary positive terms in (3.93).

Remark 3.3. From formal Taylor expansion, we find(‖φn+1‖2 + ‖2φn+1 − φn‖2

2δt

)
−
(‖φn‖2 + ‖2φn − φn−1‖2

2δt

)
∼=
(‖φn+2‖2 − ‖φn‖2

2δt

)
+O(δt2) ∼=

d

dt
‖φ(tn+1)‖2 +O(δt2),

(3.96)

and

‖φn+1 − 2φn + φn−1‖2

δt
∼= O(δt3)(3.97)

for any variable φ. Therefore, the discrete energy law (3.87) is a second order approximation of
d
dtE

triph(φ) in (3.14).

4. Numerical Simulations.

5. Concluding Remarks. We developed in this paper several efficient time stepping schemes
that are linear and unconditionally energy stable for the three component Cahn-Hilliard phase-field
model based on a novel IEQ approach. The proposed schemes bypass the difficulties encountered
in the convex splitting and the stabilized approach and enjoy the following desirable properties: (i)
accurate (up to second order in time); (ii) unconditionally energy stable; and (iii) easy to implement
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(one only solves linear equations at each time step). Moreover, the resulting linear system at each
time step is symmetric, positive definite so that it can be efficiently solved by any Krylov subspace
methods with suitable (e.g., block-diagonal) pre-conditioners.

To the best of our knowledge, these new schemes are the first schemes which are linear and
unconditionally energy stable for the three component Cahn-Hilliard phase-field model. Although we
considered only time discretization in this study, the results can be carried over to any consistent
finite-dimensional Galerkin approximations since the proofs are all based on a variational formulation
with all test functions in the same space as the space of the trial functions.
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